Advertisement

General Relativity and Gravitation

, Volume 19, Issue 7, pp 693–698 | Cite as

Some real and complex solutions of Einstein's equations

  • D. C. Robinson
Research Articles

Abstract

The construction of some real solutions of Einstein's vacuum field equations from certain half flat holomorphic metrics is described.

Keywords

Field Equation Differential Geometry Real Solution Complex Solution Vacuum Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Penrose, R. and Ward, R. S. (1980). InGeneral Relativity and Gravitation, Vol. 2, A. Held, ed. (Plenum Press, New York), p. 283.Google Scholar
  2. 2.
    Ko, M., Ludvigsen, M., Newman, E. T., and Tod, K. P. (1981).Phys. Rep.,71, 51.Google Scholar
  3. 3.
    Flaherty, E. J. (1980). InGeneral Relativity and Gravitation, Vol. 2, A. Held, ed. (Plenum Press, New York), p. 207.Google Scholar
  4. 4.
    Boyer, J. P., Finley, J. D., and Plebanski, J. F. (1980). InGeneral Relativity and Gravitation, Vol. 2, A. Held, ed. (Plenum Press, New York), p. 207.Google Scholar
  5. 5.
    Penrose, R. and Rindler, W. (1986).Spinors and Space-Time, Vol. 2. (Cambridge University Press, Cambridge).Google Scholar
  6. 6.
    Kozameh, C. N. and Newman, E. T. (1983).J. Math. Phys.,24, 2481.Google Scholar
  7. 7.
    McIntosh, C. B. G. and Hickman, M. S. (1985).Gen. Rel. Grav.,17, 111.Google Scholar
  8. 8.
    Hall, G. S., Hickman, M. S., and McIntosh, C. G. B. (1985).Gen. Rel. Grav.,17, 475.Google Scholar
  9. 9.
    Hickman, M. S. and McIntosh, C. B. G. (1986).Gen. Rel. Grav.,18, 107.Google Scholar
  10. 10.
    Plebanski, J. F. (1975).J. Math. Phys.,16, 2395.Google Scholar
  11. 11.
    Penrose, R. (1965).Proc. Roy. Soc. London Ser.,A284, 159.Google Scholar
  12. 12.
    Rozga, K. (1977).Rep. Math. Phys.,11, 197.Google Scholar
  13. 13.
    Woodhouse, N. (1977).Int. J. Theor. Phys.,16, 9, 663.Google Scholar
  14. 14.
    Penrose, R. (1968).Battelle Rencontres, C. M. De Witt and J. A. Wheeler, eds. (W. A. Benjamin, New York), p. 121.Google Scholar
  15. 15.
    Penrose, R. and Rindler, W. (1984).Spinors and Space-Time, Vol. 1. (Cambridge University Press, Cambridge).Google Scholar
  16. 16.
    Kramer, D., Stephani, H., MacCallum, M., and Herlt, E. (1980).Exact Solutions of Einstein 's Field Equations (VEB Deutscher Verlag der Wissenschaften, Berlin/Cambridge University Press, Cambridge).Google Scholar
  17. 17.
    Kundt, W. (1961).Z. Phys.,163, 77.Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • D. C. Robinson
    • 1
  1. 1.Mathematics DepartmentKing's CollegeLondonUK

Personalised recommendations