Catalysis Letters

, Volume 17, Issue 3–4, pp 245–262

Low temperature CO oxidation over Au/TiO2 and Au/SiO2 catalysts

  • S. D. Lin
  • M. Bollinger
  • M. A. Vannice
Article

Abstract

After a high-temperature reduction (HTR) at 773 K, TiO2-supported Au became very active for CO oxidation at 313 K and was an order of magnitude more active than SiO2-supported Au, whereas a low-temperature reduction (LTR) at 473 K produced a Au/TiO2 catalyst with very low activity. A HTR step followed by calcination at 673 K and a LTR step gave the most active Au/TiO2 catalyst of all, which was 100-fold more active at 313 K than a typical 2% Pd/Al2O3 catalyst and was stable above 400 K whereas a sharp decrease in activity occurred with the other Au/TiO2 (HTR) sample. With a feed of 5% CO, 5% O2 in He, almost 40% of the CO was converted at 313 K and essentially all the CO was oxidized at 413 K over the best Au/TiO2 catalyst at a space velocity of 333 h−1 based on CO + O2. Half the chloride in the Au precursor was retained in the Au/TiO2 (LTR) sample whereas only 16% was retained in the other three catalysts; this may be one reason for the low activity of the Au/TiO2 (LTR) sample. The reaction order on O2 was approximately 0.4 between 310 and 360 K, while that on CO varied from 0.2 to 0.6. The chemistry associated with this high activity is not yet known but is presently attributed to a synergistic interaction between gold and titania.

Keywords

CO oxidation Au Au/TiO2 catalysts CO oxidation over Au low-temperature CO oxidation catalytic CO oxidation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.C. Frost, Nature 334 (1988) 577.Google Scholar
  2. [2]
    S.D. Lin and M.A. Vannice, Catal. Lett. 10 (1991) 47.Google Scholar
  3. [3]
    A.G. Daglish and D.D. Eley, 2nd ICC, 1960, 2 (1961) 1615.Google Scholar
  4. [4]
    N.W. Cant and P.W. Fredrickson, J. Catal. 37 (1975) 531.Google Scholar
  5. [5]
    M. Haruta, T. Kobayashi, H. Sano and N. Yamada, Chem. Lett. (1987) 405.Google Scholar
  6. [6]
    M. Haruta, N. Yamada, T. Kobayashi and S. Lijima, J. Catal. 115 (1989) 301.Google Scholar
  7. [7]
    S.D. Gardner, G.B. Hoflund, D.R. Schryer, J. Schryer, B.T. Upchurch and E.J. Kielin, Langmuir 7 (1991) 2135.Google Scholar
  8. [8]
    S.D. Gardner, G.B. Hoflund, B.T. Upchurch, D.R. Schryer, E.J. Kielin and J. Schryer, J. Catal. 129 (1991) 114.Google Scholar
  9. [9]
    T. Kobayashi, M. Haruta, H. Sano and M. Nakane, Sensors and Actuators 13 (1988) 339.Google Scholar
  10. [10]
    T. Kobayashi, M. Haruta, S. Tsubota, H. Sano and B. Delmon, Sensors and Actuators B1 (1990) 222.Google Scholar
  11. [11]
    P. Weisz, Phys. Chem. NF 11 (1957) 1.Google Scholar
  12. [12]
    K.I. Choi and M.A. Vannice, J. Catal. 131 (1991) 1.Google Scholar
  13. [13]
    S.J. Tauster, S.C. Fung and R.L. Garten, J. Am. Chem. Soc. 100 (1978) 170.Google Scholar
  14. [14]
    S.D. Lin, PhD Thesis, The Pennsylvania State University, PA, USA (1992).Google Scholar
  15. [15]
    J.J. Stephan and V. Ponec, J. Catal. 42 (1976) 1.Google Scholar
  16. [16]
    A.G. Sault, R.J. Madix and C.T. Campbell, Surf. Sci. 169 (1986) 347.Google Scholar
  17. [17]
    D.A. Outka, and R.J. Madix, Surf. Sci. 179 (1987) 351.Google Scholar
  18. [18]
    K.I. Choi and M.A. Vannice, J. Catal. 131 (1991) 22.Google Scholar
  19. [19]
    G.I. Golodets, L.G. Svintsova, I.T. Chashechnikova and V.V. Shimanovskaya, Kinet. Katal. 31 (1990) 997.Google Scholar
  20. [20]
    P. Vergnon, J.M. Herrmann and S.J. Teichner, Zh. Fiz. Khim. 52 (1978) 3025.Google Scholar
  21. [21]
    Y. Onishi and T. Hamamura, Bull. Chem. Soc. Japan 43 (1970) 996.Google Scholar
  22. [22]
    I.L. Mikhailova, I.S. Sazonova and N.P. Keier, Kinet. Katal. 6 (1965) 704.Google Scholar
  23. [23]
    V.D. Sokolovskii, A.G.K. Boreskov, A.A. Davydov, A.G. Anshits and Yu.M. Shchekochikhin, Dokl. Akad. Nauk SSSR 214 (1974) 1361.Google Scholar
  24. [24]
    A.A. Bobyshev and V.A. Radtsig, Khim. Fiz. 4 (1985) 501.Google Scholar
  25. [25]
    R. Huzimura, H. Kurisu and T. Okuda, Surf. Sci. 197 (1988) 444.Google Scholar
  26. [26]
    O. Gonen, P.L. Kuhns, J.S. Waugh and J.P. Fraissard, J. Phys. Chem. 93 (1989) 504.Google Scholar
  27. [27]
    A.G. Shastri, A.K. Datye and J. Schwank, J. Catal. 87 (1984) 265.Google Scholar
  28. [28]
    G.L. Haller and D.E. Resasco, Adv. Catal. 36 (1989) 173.Google Scholar
  29. [29]
    N.D. Spencer and R.M. Lambert, Surf. Sci. 107 (1981) 237.Google Scholar
  30. [30]
    Y. Kang, J.A. Skiles and J.P. Wightman, J. Phys. Chem. 84 (1980) 1448.Google Scholar
  31. [31]
    R.V. Siriwardane and J.P. Wightman, J. Colloid Interface Sci. 94 (1983) 502.Google Scholar
  32. [32]
    G.D. Parfitt, J. Ramsbotham and C.H. Rochester, Faraday Soc. Trans. 67 (1971) 3100.Google Scholar
  33. [33]
    S.D. Gardner, G.B. Hoflund, M.R. Davidson, H.A. Laitinen, D.R. Schryer and B.T. Upchurch, Langmuir 7 (1991) 2140.Google Scholar
  34. [34]
    J. Schwank, S. Galvagno and G. Parravano, J. Catal. 63 (1980) 415.Google Scholar
  35. [35]
    S. Galvagno and G. Parravano, Ber. Bunsenges. Phys. Chem. 83 (1979) 894.Google Scholar
  36. [36]
    D.Y. Cha and G. Parravano, J. Catal. 18 (1970) 200.Google Scholar
  37. [37]
    E. Lisowski, L. Stobinski and R. Dus, Surf. Sci. 188 (1987) L735.Google Scholar
  38. [38]
    B. Beden, A. Bewick, K. Kunimatsu and C. Lamy, J. Electroanal. Chem. 142 (1982) 345.Google Scholar
  39. [39]
    J. Schwank, G. Parravano and H.L. Gruber, J. Catal. 61 (1980) 19.Google Scholar
  40. [40]
    S. Galvagno and G. Parravano, J. Catal. 55 (1978) 178.Google Scholar
  41. [41]
    A.F. Benton and J.C. Elgin, J. Am. Chem. Soc. 49 (1927) 2426.Google Scholar
  42. [42]
    N.W. Cant and K.H. Hall, J. Phys. Chem. 75 (1971) 2914.Google Scholar
  43. [43]
    S. Naito and M. Tanimoto, J. Chem. Soc. Chem. Commun. (1988) 832.Google Scholar
  44. [44]
    I.W. Bassi, F.W. Lytle and G. Parravano, J. Catal. 42 (1976) 139.Google Scholar
  45. [45]
    G. Cocco, S. Enzo, G. Fagherazzi, L. Schiffini, I.W. Bassi, G. Vlaic, S. Galvagno and G. Parravano, J. Phys. Chem. 83 (1979) 2527.Google Scholar
  46. [46]
    H. Kageyama, N. Kamijo, T. Kobayashi and M. Haruta, Physica B158 (1989) 183.Google Scholar
  47. [47]
    W.N. Delgass, M. Boudart and G. Parravano, J. Phys. Chem. 72 (1968) 3563.Google Scholar
  48. [48]
    M. Batista-Leal, J.E. Lester and C.A. Lucchesi, J. Electron. Spectry. Relat. Phenom. 11 (1977) 333.Google Scholar
  49. [49]
    K.S. Liang, W.R. Salaneck and I.A. Akasay, Solid State Commun. 19 (1976) 329.Google Scholar
  50. [50]
    K.S. Kim and N. Winograd, Chem. Phys. Lett. 30 (1975) 91.Google Scholar
  51. [51]
    M. Boudart, D.E. Mears and M.A. Vannice, Ind. Chim. Belg. 32 (1967) 281.Google Scholar
  52. [52]
    M.A. Vannice, S.H. Hyun, B. Kalpakci and W.C. Liauh, J. Catal. 56 (1979) 358.Google Scholar
  53. [53]
    Y.B. Zhao and R. Gomer, Surf. Sci. 261 (1992) 171.Google Scholar
  54. [54]
    L. Kieken and M. Boudart, 10th Int. Congr. on Catalysis, Budapest, July 1992.Google Scholar
  55. [55]
    M.A. Vannice, Catal. Today 12 (1992) 255.Google Scholar
  56. [56]
    S. Tsubota, M. Haruta, T. Kobayashi, A. Veda and Y. Nakahara, in:Preparation of Catalysts, Vol. 5, eds. G. Poncelet, P.A. Jacobs, P. Grange and B. Delmon (Elsevier, Amsterdam, 1991) p. 695.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1993

Authors and Affiliations

  • S. D. Lin
    • 1
  • M. Bollinger
    • 1
  • M. A. Vannice
    • 1
  1. 1.Department of Chemical EngineeringPenn State UniversityUniversity ParkUSA

Personalised recommendations