Catalysis Letters

, Volume 14, Issue 2, pp 149–163 | Cite as

Investigations of Fe-Ru bimetallic catalysts by in situ Mössbauer and EXAFS studies

  • K. R. Kannan
  • G. U. Kulkarni
  • C. N. R. Rao


In situ Mössbauer and EXAFS investigations have shown that the reduction of iron in the monometallic Fe/SiO2 catalyst is only partial, the reduction being mostly to a ferrous silicate phase. In the bimetallic Fe-Ru/SiO2 catalysts, the proportion of the FeRu alloy formed on reduction increases markedly with the increase in Ru content; clearly, Ru significantly enhances the reduction of iron on SiO2. In the Ru-rich compositions (Ru/Fe 1.0), most of the iron is present in the alloy phase and there is no segregation of α-Fe. A comparative study of the different supports has shown that γ-Al2O3 and SiO2 interact with iron strongly at low reduction temperatures while the TiO2 support interacts at higher temperatures. The presence of traces of Fe3+ often found in reduced Fe-Ru catalysts is shown to arise from the oxidation of fine segregated iron particles on the support.


Bimetallic catalysts hydrogenation catalysts Fe-Ru/SiO2 supported Fe-Ru catalysts Fe/SiO2 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    V. Ponec, Adv. Catal. 32 (1983) 149.Google Scholar
  2. [2]
    J.A. Rodriguez and D.W. Goodman, J. Phys. Chem. 95 (1991) 4196.Google Scholar
  3. [3]
    C.T. Campbell, Ann. Rev. Phys. Chem. 41 (1990) 775.Google Scholar
  4. [4]
    J.H. Sinfelt,Bimetallic Catalysts (Wiley, New York, 1983).Google Scholar
  5. [5]
    J.H. Sinfelt, G.H. Via and F.W. Lytle, Catal. Rev. Sci. Eng. 26 (1984) 81.Google Scholar
  6. [6]
    W.H.M. Sachtler, Faraday Discussions Chem. Soc. 72 (1981) 7.Google Scholar
  7. [7]
    W.M.H. Sachtler and R.A. van Santen, Adv. Catal. 26 (1977) 69.Google Scholar
  8. [8]
    G.A. Somarjai, ed.,Fischer — Tropsch synthesis; Fundamentals and Applications, Catal. Lett. 7 (1990).Google Scholar
  9. [9]
    H.S. Woo, T.H. Fleisch, H.C. Foley, S. Uchiyama and W.N. Delgass, Catal. Lett. 4 (1990) 93.Google Scholar
  10. [10]
    G. Leitz, M. Nimz, J. Volter and L. Guczi, Hyperfine Interactions 41 (1988) 657.Google Scholar
  11. [11]
    F.J. Berry, L. Liwu, W. Chengyu, T. Renyuan, Z. Su and and L. Dongbai, J. Chem. Soc. Faraday Trans. I 81 (1985) 2293.Google Scholar
  12. [12]
    J.W. Niemantsverdriet, A.M. van der Kraan, J.J. van Loef and W.N. Delgass, J. Phys. Chem. 87 (1983) 1292.Google Scholar
  13. [13]
    J.W. Niemantsverdriet, J.A.C. van Kaam, C.F.J. Flipse and A.M. van der Kraan, J. Catal. 96 (1985) 58.Google Scholar
  14. [14]
    K. Asakura and Y. Iwasawa, J. Chem. Soc. Faraday Trans. I 84 (1988) 2445.Google Scholar
  15. [15]
    K. Asakura, Y. Iwasawa and M. Yamada, J. Chem. Soc. Faraday Trans. I 84 (1988) 2457.Google Scholar
  16. [16]
    F.J. Berry, L. Liwu, D. Hongzhang, L. Dongbai, T. Renyuan, W. Chengyu and Z. Su, J. Chem. Soc. Faraday Trans I 83 (1987) 2573.Google Scholar
  17. [17]
    F.J. Berry, X. Changhai, S. Jobson and R. Strange, J. Chem. Soc. Faraday Trans. I 85 (1989) 3891.Google Scholar
  18. [18]
    A.F.H. Weilers, A.J.H.M. Kock, C.E.C.A. Hop, J.W. Gens and A.M. van der Kraan, J. Catal. 117 (1989) 1.Google Scholar
  19. [19]
    M.C. Hobson and A.D. Campbell, J. Catal. 8 (1967) 294.Google Scholar
  20. [20]
    R.W. Grant, R.M. Housley and S. Geller, Phys. Rev. 85 (1972) 1700.Google Scholar
  21. [21]
    M.E. Vol'pin, Y.N. Novikov, V.A. Postnikov, V.B. Shur, B. Bayerl, L. Kaden, M. Wahren, L.M. Dmitrienko, R.A. Stukan and A.V. Nefed'ev, Z. Anorg. Allg. Chem. 428 (1977) 231.Google Scholar

Copyright information

© J.C. Baltzer A.G. Scientific Publishing Company 1992

Authors and Affiliations

  • K. R. Kannan
    • 1
  • G. U. Kulkarni
    • 1
  • C. N. R. Rao
    • 1
  1. 1.Solid State and Structural Chemistry Unit and CSIR Centre of Excellence in ChemistryIndian Institute of ScienceBangaloreIndia

Personalised recommendations