Advertisement

Hydrobiologia

, Volume 215, Issue 3, pp 231–241 | Cite as

Effects of alum treatment on phosphorus dynamics in a north-temperate reservoir

  • William F. James
  • John W. Barko
  • William D. Taylor
Article

Abstract

Eau Galle Reservoir, Wisconsin, was treated with a hypolimnetic dose of aluminum sulfate (alum) in 1986 to diminish excessive phytoplankton production associated with high phosphorus loading from anoxic, profundal sediments. Prior to treatment, internal total phosphorus (TP) loading was 3 to 6 times greater than external TP loading during summer stratification. Periodic increases in epilimnetic TP mass and chlorophylla concentrations closely corresponded with elevated internal TP loading. For one year following treatment, internal TP loading and concentrations of soluble reactive phosphorus (SRP) in the hypolimnion were substantially reduced. However, abnormally high external TP loading during the stratified period of 1986 resulted in high TP mass and chlorophylla in the epilimnion. During the summers of 1987 and 1988, effects of alum treatment on internal TP loading were essentially negated, and epilimnetic TP mass and chlorophylla remained unchanged from pretreatment years. Multiple potential sources of P input to this reservoir make it difficult to reduce epilimnetic P and phytoplankton growth.

Key words

aluminum sulfate external P loading internal P loading phosphorus chlorophyll reservoirs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. APHA (American Public Health Association, American Water Works Association, and Water Pollution Control Federation), 1985. Standard methods for the examination of water and wastewater. 16th edn. Washington, D.C., USA, 1193 pp.Google Scholar
  2. Barko, J. W., D. J. Bates, G. J. Filbin, S. M. Hennington & D. G. McFarland, 1984. Seasonal growth and community composition of phytoplankton in a eutrophic Wisconsin impoundment. J. Freshwat. Ecol. 2: 519–533.Google Scholar
  3. Barko, J. W., W. F. James, W. D. Taylor & D. G. McFarland, 1990. Effects of alum treatment in phosphorus and phytoplankton dynamics in Eau Galle Reservoir: A synopsis. Lake Res. Man. 6: 1–8.Google Scholar
  4. Baxter, R. M., 1977. Environmental effects of dams and impoundments. Ann. Rev. Ecol. Sys. 8: 255–283.Google Scholar
  5. Blakar, I. A., 1979. A close-interval sampler with minimal disturbance properties. Limnol. Oceanogr. 24: 983–988.Google Scholar
  6. Born, S. M., 1979. Lake rehabilitation: A status report. Envir. Man. 3: 145–153.Google Scholar
  7. Cooke, G. D., M. R. McComas, D. W. Waller & R. H. Kennedy, 1977. The occurrence of internal phosphorus loading in two small, eutrophic, glacial lakes in northeastern Ohio. Hydrobiologia 56: 129–135.Google Scholar
  8. Cooke, G. D. & R. H. Kennedy, 1978. Effects of hypolimnetic application of aluminum sulfate to a eutrophic lake. Int. Ver. Theor. Angew. Limnol. Verh. 20: 486–489.Google Scholar
  9. Cooke, G. D., R. T. Heath, R. H. Kennedy & M. R. McComas, 1978. Effects of diversion and alum application on two eutrophic lakes. U.S. Environmental Protection Agency 600/3-78-033, 101 pp.Google Scholar
  10. Cooke, G. D., R. T. Heath, R. H. Kennedy & M. R. McComas, 1982. Change in lake trophic state and internal phosphorus release after aluminum sulfate application. Wat. Res. Bull. 18: 699–705.Google Scholar
  11. Drake, J. C. & S. I. Heaney, 1987. Occurrence of phosphorus and its potential remobilization in the littoral sediments of a productive English lake. Freshwat. Biol. 17: 513–523.Google Scholar
  12. Edmondson, W. T., 1970. Phosphorus, nitrogen, and algae in Lake Washington after nutrient diversion of sewage. Science 169: 690–691.PubMedGoogle Scholar
  13. Effler, S. W., M. C. Wodka, C. T. Driscoll, C. Brooks, M. Perkins & E. M. Owens, 1986. Entrainment-based flux of phosphorus in Onondaga Lake. J. Envir. Eng. Div., ASCE 112: 617–622.Google Scholar
  14. Foy, R. H., 1985. Phosphorus inactivation in an eutrophic lake by direct addition of ferric aluminum sulfate: Impact on iron and phosphorus. Freshwat. Biol. 15: 613–630.Google Scholar
  15. Garrison, P. J. & D. R. Knauer, 1983. Lake restoration: A five year evaluation of the Mirror and Shadow Lakes project Waupaca, Wisconsin. U.S. Environmental Protection Agency 600/53-83-010, Corvalis, Oregon, USA, 100 pp.Google Scholar
  16. Gaugush, R. F., 1984. Mixing events in Eau Galle Lake. In Downs, S. J. & J. M. Frazier (eds), Lake and Reservoir Management. Proceedings of the North American Lake Management Society held at Knoxville, Tennessee. October 18–20,. 1983. U.S. Environmental Protection Agency 440/5–84–001, Washington, D.C., USA: 286–291.Google Scholar
  17. Imboden, D. M. & S. Emerson, 1978. Natural radon and phosphorus as limnologic tracers: Horizontal and vertical eddy diffusion in Greifensee. Limnol. Oceanogr. 23: 77–90.Google Scholar
  18. James, W. F. & J. W. Barko, 1990a. Macrophyte influences on the zonation of sediment accretion and composition in a north-temperature reservoir. Arch. Hydrobiol. (In press).Google Scholar
  19. James, W. F. & J. W. Barko, 1990b. Estimation of phosphorus exchange between littoral and pelagic zones during nighttime convective circulation. Limnol. Oceanogr. (In press).Google Scholar
  20. James, W. F., R. H. Kennedy & R. H. Gaugush, 1990. Effects of large-scale metalimnetic migrations on phosphorus dynamics in a north-temperate reservoir. Can. J. Fish. aquat. Sci. 47: 156–162.Google Scholar
  21. Jassby, A. & T. Powell, 1975. Vertical patterns of eddy diffusion during stratification in Castle Lake, California. Limnol. Oceanogr. 20: 530–543.Google Scholar
  22. Kennedy, R. H., 1987. Material loadings to Eau Galle Lake.In Kennedy, R. H. & R. C. Gunkel (eds), Limnological studies at Eau Galle Lake, Wisconsin, Report 2, Special studies and summary. Technical Report E-85–2, U.S. Army Engineers Waterways Experiment Station, Vicksburg, Mississippi, USA, pp. 2–22.Google Scholar
  23. Kennedy, R. H. & G. D. Cooke, 1982. Control of lake phosphorus with aluminum sulfate: Dose determination and application techniques. Wat. Res. Bull. 18: 389–395.Google Scholar
  24. Kennedy, R. H., J. W. Barko, W. F. James, W. D. Taylor & G. L. Godshalk, 1987. Aluminum sulfate treatment of a eutrophic reservoir: Rationale, application methods, and preliminary results. Lake Res. Man. 3: 85–90.Google Scholar
  25. Kortmann, R. W., D. D. Henry, A. Kuether & S. Kaufman, 1982. Epilimnetic nutrient loading by metalimnetic erosion and resultant algal responses in Lake Waramaug, Connecticut. Hydrobiologia 92: 501–510.Google Scholar
  26. Larson, D. P., J. Van Sickle, K. W. Malueg & P. D. Smith, 1979. The effects of wastewater phosphorus removal on Shagawa Lake, Minnesota: Phosphorus supplies, lake phosphorus and chlorophylla. Wat. Res. 13: 1259–1272.Google Scholar
  27. Larson, D. P., D. W. Schultz & K. Malueg, 1981. Summer internal phosphorus supplies in Shagawa Lake, Minnesota. Limnol. Oceanogr. 26: 740–753.Google Scholar
  28. Lorenzen, C. J., 1967. Determination of chlorophyll and pheo-pigments: Spectrophotometric Equations. Limnol. Oceanogr. 12: 343–346.Google Scholar
  29. Nürnberg, G. K., 1984. The prediction of internal phosphorus load in lakes with hypolimnetic anoxia. Limnol. Oceanogr. 29: 111–124.Google Scholar
  30. Nürnberg, G. K., 1987. A comparison of internal phosphorus loads in lakes with hypolimnetic anoxia: Laboratory incubations versus in situ hypolimnetic phosphorus accumulation. Limnol. Oceanogr. 32: 1162–1164.Google Scholar
  31. Nürnberg, G. K., M. Shaw, P. J. Dillon & D. J. McQueen, 1986. Internal phosphorus load in oligotrophic Precambrian Shield lake with an anoxic hypolimnion. Can. J. Fish. aquat. Sci. 43: 574–580.Google Scholar
  32. Osgood, R. A., 1988. A hypothesis on the role ofAphanizomenon in translocating phosphorus. Hydrobiologia 169: 69–76.Google Scholar
  33. Peterson, J. O., J. T. Wall, T. L. Wirth & S. M. Born, 1973. Eutrophication control: Nutrient inactivation by chemical precipitation at Horseshoe Lake, Wisconsin, Technical Bulletin 62, Wisconsin Department of Natural Resources, Madison, Wisconsin, USA, 118 pp.Google Scholar
  34. Riley, E. T. & E. E. Prepas, 1984. Role of internal phosphorus loading in two shallow, productive lakes in Alberta, Canada. Can. J. Fish. aquat. Sci. 41: 845–855.Google Scholar
  35. Robards, R. D. & P. R. B. Ward, 1978. Vertical diffusion and nutrient transport in a tropical lake (Lake McIlwaine, Rhodesia). Hydrobiologia 59: 213–221.Google Scholar
  36. Ryding, S. O., 1981. Reversibility of man-induced eutrophication. Experience of a lake recovery study in Sweden. Int. Rev. Gesamten. Hydrobiol. 66: 449–502.Google Scholar
  37. Salonen, K., R. I. Jones & L. Arvola, 1984. Hypolimnetic phosphorus retrieval by diel vertical migrations of lake phytoplankton. Freshwat. Biol. 14: 439–442.Google Scholar
  38. SAS (Statistical Analysis System), 1985. SAS User's guide: Statistics, version 5 edition. SAS Institute, Cary North Carolina, USA. 956 pp.Google Scholar
  39. Soltero, R. A., D. G. Nichols, A. F. Gasperino & M. A. Beckwith, 1981. Lake restoration: Medical Lake, Washington. J. Freshwat. Ecol. 1: 155–165.Google Scholar
  40. Stauffer, R. E., 1985. Nutrient internal cycling and trophic regulation of Green Lake, Wisconsin. Limnol. Oceanogr. 30: 347–363.Google Scholar
  41. Stauffer, R. E., 1987. Vertical nutrient transport and its effect on epilimnetic phosphorus in four calcareous lakes. Hydrobiologia 154: 87–102.Google Scholar
  42. Stauffer, R. E. & G. F. Lee, 1973. Role of thermocline migration in regulating algal blooms. In Middlebrooks, E. J., D. H. Falkenburg & T. E. Maloney (eds), Modeling the Eutrophication Process. Ann Arbor Science Publishers, Ann Arbor, Michigan, USA: 73–82.Google Scholar
  43. Stauffer, R. E. & D. E. Armstrong, 1984. Lake mixing and its relationship to epilimnetic phosphorus in Shagawa Lake, Minnesota. Can. J. Fish. aquat. Sci. 41: 57–69.Google Scholar
  44. Stefan, H. G. & M. J. Hanson, 1981. Phosphorus recycling in five shallow lakes. J. Envir. Eng. Div., ASCE 107: 713–730.Google Scholar
  45. Stefan, H. G., G. M. Horsch & J. W. Barko, 1989. A model for the estimation of convective exchange in the littoral region of a shallow lake during cooling. Hydrobiologia 174: 225–234.Google Scholar
  46. Taylor, W. D., J. W. Barko & W. F. James, 1988. Contrasting diel patterns of vertical migration in the dinoflagellateCeratium hirundinella in relation to phosphorus supply in a north temperate reservoir. Can. J. Fish. aquat. Sci. 45: 1093–1098.Google Scholar
  47. Theis, T. L. & P. J. McCabe, 1978. Phosphorus dynamics in hypereutrophic lake sediments. Wat. Res. 12: 677–685.Google Scholar
  48. Thornton, K. W., R. H. Kennedy, J. H. Carroll, W. W. Walker, R. C. Gunkel & S. Ashby, 1981. Reservoir sedimentation and water quality—An heuristic model. In H. G. Stefan (ed.), American Society of Civil Engineers, Proceedings of a Symposium on Surface Water Impoundments 1: 654–661.Google Scholar
  49. Twinch, A. J. & R. H. Peters, 1984. Phosphate exchange between littoral sediments and overlying water in an oligotrophic north-temperate lake. Can. J. Fish. aquat. Sci. 41: 1609–1617.Google Scholar
  50. Walker, W. W., 1985. Empirical methods for predicting eutrophication in impoundments; Report 4, Phase 3: Applications manual. Technical Report E-81–9. U.S. Army Engineer, Waterways Experiment Station, Vicksburg, Mississippi, USA 305 pp.Google Scholar
  51. Welch, E. B., 1977. Nutrient diversion: Resulting lake trophic state and phosphorus dynamics. U.S. Environmental Protection Agency Ecological Research Series Report. 600/3-77-003. Corvalis, Oregon, USA.Google Scholar
  52. Wodka, M. C., S. W. Effler, C. T. Driscoll, S. D. Field & S. P. Devan, 1983. Diffusivity-based flux of phosphorus in Onondaga Lake. J. Envir. Eng. Div., ASCE 109: 1403–1430.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • William F. James
    • 1
  • John W. Barko
    • 1
  • William D. Taylor
    • 1
  1. 1.Environmental Laboratory, Waterways Experiment StationVicksburgUSA

Personalised recommendations