Catalysis Letters

, Volume 8, Issue 2–4, pp 107–114 | Cite as

Reactivity of tungsten carbides I. Catalytic and temperature-programmed reactions of methanol

  • J. S. Lee
  • M. Boudart
Article

Abstract

When methanol reacts over tungsten carbide in a steady-state catalytic mode, methyl formate is formed with a selectivity higher than 90%. On the other hand, temperature-programmed decomposition of methanol preadsorbed on the same surface produces mostly carbon monoxide. The difference in selectivity in both modes of reaction is discussed. By contrast, platinum catalyzes the transformation of methanol to dimethyl ether with high selectivity.

Keywords

Tungsten carbide methanol reactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Keim, in:Catalysis in C 1 Chemistry, ed. W. Keim (D. Reidel, Dordrecht, 1983) p. 89.Google Scholar
  2. [2]
    F. Nozaki, Hyomen (Surface) 21 (1983) 194.Google Scholar
  3. [3]
    E. Miyazaki and I. Yasumori, Bull. Chem. Soc. Jpn. 40 (1967) 2012.Google Scholar
  4. [4]
    Y. Morikawa, T. Goto, Y. Moro-oka and T. Ikawa, Chem. Lett. (1982) 1805.Google Scholar
  5. [5]
    B. Denise and R.P.A. Sneeden, C1 Mol. Chem. 1 (1985) 307.Google Scholar
  6. [6]
    T. Sodesawa, M. Nagacho, A. Onodera and F. Nozaki, J. Catal. 102 (1986) 460.Google Scholar
  7. [7]
    I. Yasumori, T. Nakamura and E. Miyazaki, Bull. Chem. Soc. Jpn. 40 (1967) 1372.Google Scholar
  8. [8]
    R.P.H. Gasser, G.V. Jackson and F.E. Rolling, Surf. Sci. 61 (1976) 443.Google Scholar
  9. [9]
    E. Miyazaki, I. Kojima and M. Orita, J.C.S., Chem. Commun. (1985) 108.Google Scholar
  10. [10]
    E.I. Ko, J.B. Benziger and R.J. Madix, J. Catal. 62 (1980) 264.Google Scholar
  11. [11]
    L. Volpe and M. Boudart, J. Solid State Chem. 59 (1985) 348.Google Scholar
  12. [12]
    R.B. Levy and M. Boudart, Science 181 (1973) 547.Google Scholar
  13. [13]
    M. Boudart, J.S. Lee, K. Imura and S. Yoshida, J. Catal. 103 (1987) 30.Google Scholar
  14. [14]
    A.J. Robell, E.V. Ballou and M. Boudart, J. Phys. Chem. 68 (1964) 2748.Google Scholar
  15. [15]
    J.E. Benson and M. Boudart, J. Catal. 4 (1965) 704.Google Scholar
  16. [16]
    C. McConica and M. Boudart, J. Catal. 117 (1989) 33.Google Scholar
  17. [17]
    L.E. Toth,Transition Metal Carbides and Nitrides (Academic Press, New York, 1971).Google Scholar
  18. [18]
    R.V. Sara, J. Amer. Ceram. Soc. 48 (1965) 251.Google Scholar
  19. [19]
    D.R. Stull, E.F. Westrum, Jr. and G.C. Sinke,The Chemical Thermodynamics of Organic Compounds (John Wiley and Sons, New York, 1969).Google Scholar
  20. [20]
    Y. Matsumura, K. Hashimoto and S. Yoshida, J. Catal. 100 (1986) 392.Google Scholar
  21. [21]
    I. Kojima, E. Miyazaki, Y. Inoue and I. Yasumori, J. Catal. 59 (1979) 472.Google Scholar
  22. [22]
    O.M. Poltorak and V.S. Boronin, Russ. J. Phys. Chem. 40 (1966) 1436.Google Scholar
  23. [23]
    R. Van Hardeveld and F. Hartog, Surf. Sci. 15 (1969) 189.Google Scholar
  24. [24]
    M. Boudart, in:Proc. VIth Int. Congress on Catalysis, Vol. 1, eds. G.C. Bond, P.B. Wells and F.C. Tompkins (Chemical Society, London, 1977) p.1.Google Scholar
  25. [25]
    J.S. Rieck and A.T. Bell, J. Catal. 85 (1984) 143.Google Scholar
  26. [26]
    E. Iglesia and M. Boudart, J. Catal. 81 (1983) 204, 214, 224; J. Catal 88 (1984) 325; J. Phys. Chem. 90 (1986) 5272.Google Scholar

Copyright information

© J.C. Baltzer A.G. Scientific Publishing Company 1991

Authors and Affiliations

  • J. S. Lee
    • 1
  • M. Boudart
    • 1
  1. 1.Department of Chemical EngineeringStanford UniversityStanfordUSA

Personalised recommendations