Advertisement

General Relativity and Gravitation

, Volume 25, Issue 11, pp 1185–1188 | Cite as

Robinson-Trautman equations and Chandrasekhar's special perturbation of the Schwarzschild metric

  • Guoying Qi
  • Bernard F. Schutz
Research Articles

Abstract

A perturbation wave solution of the Robinson-Trautman equations is proved to be a perturbation of the Schwarzschild black hole which describes an outgoing axial gravitational wave and corresponds to a special case of Chandrasekhar's algebraically special perturbation of the Schwarzschild metric.

Keywords

Black Hole Differential Geometry Wave Solution Gravitational Wave Perturbation Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chandrasekhar, S. (1983).The Mathematical Theory of Black Holes (Oxford University Press, Oxford/New York).Google Scholar
  2. 2.
    Regge, T., and Wheeler, J. A. (1957).Phys. Rev. 108, 1063.Google Scholar
  3. 3.
    Zerilli, F. J. (1970).Phys. Rev. D2, 2141.Google Scholar
  4. 4.
    Schutz, B. F., and Will, C. M. (1985).Astrophys. J. 291, L33.Google Scholar
  5. 5.
    Leaver, E. W. (1986).Phys. Rev. D34, 384.Google Scholar
  6. 6.
    Sun, Y. H., and Price, R. H. (1988).Phys. Rev. D38, 1040.Google Scholar
  7. 7.
    Nollert, H.-P., and Schmidt, B. G. (1992).Phys. Rev. D45, 2617.Google Scholar
  8. 8.
    Chandrasekhar, S. (1984).Proc. Roy. Soc. Lond. A392, 1.Google Scholar
  9. 9.
    Andersson, N., and Lynnæus, S. (1992).Phys. Rev. D46, 4179.Google Scholar
  10. 10.
    Robinson, I., and Trautman, A. (1962).Proc. Roy. Soc. Lond. A265, 463.Google Scholar
  11. 11.
    Kramer, D., Stephani, H., MacCallum, M. A. H., and Herlt, E. (1980).Exact Solutions of Einstein's Field Equations (Cambridge University Press, Cambridge).Google Scholar
  12. 12.
    Newman, E. T., and Penrose, R. (1966).J. Math. Phys. 7, 863.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Guoying Qi
    • 1
    • 2
  • Bernard F. Schutz
    • 1
  1. 1.Department of Physics and AstronomyUniversity of Wales College of CardiffCardiffUK
  2. 2.Physics DepartmentLiaoning Normal UniversityDalianP.R. China

Personalised recommendations