General Relativity and Gravitation

, Volume 8, Issue 3, pp 197–217 | Cite as

Dynamics of extended bodies in general relativity center-of-mass description and quasirigidity

  • Jürgen Ehlers
  • Ekkart Rudolph
Research Articles


Dixon's approach to describe the dynamics of extended bodies in metric theories of gravity is elaborated. The exact, general relation between the center-of-mass 4-velocity and the 4-momentum is derived. Quasirigid bodies are defined, and their equations of motion are shown to be determinate for a given metric. Multipole approximations are considered, and the physical meaning of quasirigidity is investigated by establishing an approximate connection with continuum mechanics.


General Relation Physical Meaning Differential Geometry Extended Body Multipole Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dixon, W. G. (1970).Proc. R. Soc. London, Ser. A 314, 499.Google Scholar
  2. 2.
    Dixon, W. G. (1970).Proc. R. Soc. London, Ser. A 319, 509.Google Scholar
  3. 3.
    Dixon, W. G. (1973).Gen. Rel. Grav. 4, 199.Google Scholar
  4. 4.
    Dixon, W. G. (1974).Philos. Trans. R. Soc. London, Ser. A 277, 59.Google Scholar
  5. 5.
    Misner, C. W., Thome, K. S., and Wheeler, J. A. (1971).Gravitation. (San Francisco).Google Scholar
  6. 6.
    Madore, J. (1966).C. R. Acad. Sci., Ser. A 263, 746.Google Scholar
  7. 7.
    Beiglböck, W. (1967).Commun. Math. Phys. 5, 106.Google Scholar
  8. 8.
    Geroch, R., and Soo Yang, P. (1975).J. Math. Phys. 16, 65.Google Scholar
  9. 9.
    Synge, J. L. (1956).Relativity: The Special Theory. (Amsterdam).Google Scholar
  10. 10.
    Schild, A. (1967). inLectures on General Relativity, J. Ehlers, ed. “Lectures in Applied Mathematics,” Vol. 8, pp. 17–20. (American Mathematical Society).Google Scholar
  11. 11.
    Munk, W. H. and MacDonald, G. J. F. (1960),The Rotation of the Earth. (Cambridge), p. 10.Google Scholar
  12. 12.
    Fock, V. A. (1959).The Theory of Space, Time and Gravitation. (New York).Google Scholar
  13. 13.
    D'Eath, P. D. (1975).Phys. Rev. D 11, 1387;12, 2183.Google Scholar
  14. 14.
    Carter, B., and Quintana, H. (1972).Proc. R. Soc. London, Ser. A 331, 57.Google Scholar
  15. 15.
    Carter, B. (1973).Phys. Rev. D 7, 1590.Google Scholar
  16. 16.
    Wahlquist, H. D., and Estabrook, F. B. (1966).J. Math. Phys. 7, 894.Google Scholar
  17. 17.
    Cohen, J. M. (1970).Astrophys. Space Sci. 6, 263.Google Scholar
  18. 18.
    Infeld, L., and Plebanski, J. (1960).Motion and Relativity. (New York).Google Scholar
  19. 19.
    Tod, K. P., and de Felice, F. (1976). “Spinning Test Particles in the Field of a Black Hole.” (Preprint, University of Padova).Google Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • Jürgen Ehlers
    • 1
  • Ekkart Rudolph
    • 1
  1. 1.Max-Planck-Institut für Physik und AstrophysikMünchen 40West Germany

Personalised recommendations