, Volume 13, Issue 2, pp 101–115 | Cite as

Actual truth, possible knowledge

  • Wlodek Rabinowicz
  • Krister Segerberg


The well-known argument of Frederick Fitch, purporting to show that verificationism (= “Truth implies knowability”) entails the absurd conclusion that all the truths are known, has been disarmed by Dorothy Edgington's suggestion that the proper formulation of verificationism presupposes that we make use of anactuality operator along with the standardly invoked epistemic and modal operators. According to her interpretation of verificationism, the actual truth of a proposition implies that it could be known in some possible situation that the proposition holds in theactual situation. Thus, suppose that our object language contains the operatorA — “it is actually the case that ...” — with the following truth condition: ⊢ vA ⌽ iff ⊢w0⌽, wherew 0 stands for the designated world of the model — the actual world. Then we can formalize the verificationist claim as follows:

$$A\phi \to \diamondsuit KA\phi .$$

However, while Edgington's introduction of the actuality operator dissolves Fitch's paradox, our troubles are not yet over. When we combine the truth-condition for the actuality operator with the standard truth-clauses for necessity and knowledge, formulated in terms of appropriate accessibility relations between worlds, it turns out that we once again have to accept the absurd claim: all actual truths must be known! Thus, the standard truth-conditions for the actuality operator and for the epistemic operator do not mix: when we try to combine them, they yield absurdities. To get a proper mix, we need a new semantics for actuality and knowledge.

What is distinctive for our semantic proposal is that we give up the idea of afixed actual world (the designated point) and replace it with avariable perspective. The latter is contrasted with areference-world, which is being referred to, or described. We get what is sometimes called a two-dimensional semantics, in which a formula is being evaluated not just at one point (⊢ v ⌽) but at a pair of points (w⊢v⌽, wherew is a point of perspective, whilev is a point of reference). Intuitively, a formula says somethingabout the reference-world, butwhat it says is partially determined by the world of perspective. In particular, a formula such asA⌽ is true from a perspectivew at any reference-worldv iff it is true fromw's perspective atw itself. It turns out that, in a two-dimensional semantics, it is possible to formulate verificationism in a non-paradoxical way, provided we treat knowledge as a “variable-perspective” operator. The truth-condition of such an operator does not keep the perspective-world fixed. It does not involve an accessibility relation between worlds, but rather a relation between pairs of worlds:wvK ⌽ iffw′ν′⌽ everyw′ andν′ such that 〈w,νEw′, ν′〉. The relationE is meant to model epistemic uncertainty that originates from two different sources: The knower's information about the reference world may be more or less limited, and the same applies to his knowledge about the world that constitutes the point of perspective.


Actual World Accessibility Relation Epistemic Uncertainty Actual Truth Atomic Sentence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bolzano, B.: 1973,Theory of Science, ed. Jan Berg, trans. Burnham Terrell. Dordrecht, Holland, D. Reidel.CrossRefGoogle Scholar
  2. Edgington, D.: 1985, ‘The Paradox of Knowability’,Mind 93, 557–568.CrossRefGoogle Scholar
  3. Fitch, F. B.: 1963, ‘A Logical Analysis of Some Value Concepts’,The Journal of Symbolic Logic 28, 135–142.CrossRefGoogle Scholar
  4. Hart, W. D.: 1979, ‘The Epistemology of Abstract Objects’,Proceedings of the Aristotelian Society 53(suppl), 153–165.Google Scholar
  5. Humberstone, I. L.: 1981, ‘From Worlds to Possibilities’,Journal of Philosophical Logic 10, 313–339.CrossRefGoogle Scholar
  6. Kaplan, D.: 1989, ‘Demonstratives. An Essay on the Semantics, Logic, Metaphysics, and Epistemology of Demonstratives and Other Indexicals’, in J. Almog, J. Perry and H. Wettstein (Eds.),Themes from Kaplan, Oxford UP.Google Scholar
  7. Lewis, D. K.: 1973,Counterfactuals, Oxford, Blackwell.Google Scholar
  8. Lindström, S.: 1993, ‘Situations, Truth and Knowability — A Situation-Theoretic Analysis of a Paradox by Fitch’, manuscript, first draft.Google Scholar
  9. Schlesinger, G.: 1985,The Range of Epistemic Logic, Aberdeen: Aberdeen University Press.Google Scholar
  10. Segerberg, K.: 1973, ‘Two-Dimensional Modal Logic’,Journal of Philosophical Logic 2, 77–96.CrossRefGoogle Scholar
  11. Williamson, T.: (1987), ‘On the Paradox of Knowability’,Mind 95, 256–261.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Wlodek Rabinowicz
    • 1
  • Krister Segerberg
    • 1
  1. 1.Uppsala UniversitySweden

Personalised recommendations