Advertisement

General Relativity and Gravitation

, Volume 21, Issue 11, pp 1143–1157 | Cite as

Negative mass in general relativity

  • W. B. Bonnor
Research Articles

Abstract

Mechanics is considered in a universe containing negative mass. Demanding (i) conservation of momentum, (ii) principle of equivalence, (iii) no runaway motions, (iv) no Schwarzschild black holes, and (v) the inertial and active gravitational masses of a body shall have the same sign, we find thatall mass must be negative. Some properties of such a universe are investigated. We show that a neutral spherical body of arbitrarily small size is possible, and observers external to it can communicate with each other by light rays without horizon problems. There are no cosmological models with a power-law big bang, and there is an abundance of nonsingular models. Like electric charges would attract each other, and unlike ones would repel. This could produce stars and galaxies held together by charge and not gravity. The investigation does not suggest any reason why mass in the real universe should be positive.

Keywords

Black Hole General Relativity Electric Charge Differential Geometry Cosmological Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jammer, M. (1961).Concepts of Mass (Harvard University Press, Cambridge, Massachusetts), Ch. 10.Google Scholar
  2. 2.
    Bondi, H. (1957).Rev. Mod. Phys.,29, 423.Google Scholar
  3. 3.
    Morrison, P. (1958).American J. Phys.,26, 358.Google Scholar
  4. 4.
    Matz, and Kaempffer (1958).Bull. American Phys. Soc, b, 317.Google Scholar
  5. 5.
    Shiff, L. I. (1959).Proc. Nat. Acad. Sci.,45, 69.Google Scholar
  6. 6.
    de Beauregard, C. (1961).Comptes Rendus,252, 1737.Google Scholar
  7. 7.
    Winterberg, (1961).Nuovo Cimento,19, 186.Google Scholar
  8. 8.
    Hoffmann, B. (1965).International Conference on Relativistic Theories of Gravitation (King's College, London), Vol. 2.Google Scholar
  9. 9.
    Terletsky, Ya. P. (1965).International Conference on Relativistic Theories of Gravitation (King's College, London), Vol. 2.Google Scholar
  10. 10.
    Inomata, A., and Peak, D. (1969).Nuovo Cimento,63, 132.Google Scholar
  11. 11.
    McCrea, W. H. (1964).Astrophysica Norvegica,9, 89.Google Scholar
  12. 12.
    Terletsky, Ya. P. (1986).Paradoxes in the Theory of Relativity (Plenum, New York), Ch.6.Google Scholar
  13. 13.
    de Martins, R. A. (1980).Lett. Nuovo Cimento,28, 265.Google Scholar
  14. 14.
    Kramer, D., Stephani, H., MacCallum, M. A. H., and Herlt, H. (1980).Exact Solutions of Einstein's Field Equations (Deutscher Verlag der Wissenschaften, Berlin), p. 135.Google Scholar
  15. 15.
    Kramer, D., Stephani, H., MacCallum, M. A. H., and Herlt, H. (1980).Exact Solutions of Einstein's Field Equations (Deutscher Verlag der Wisenschaften, Berlin), p. 119.Google Scholar
  16. 16.
    Bonnor, W. B., and Swaminarayan, N. S. (1964).Z. Phys.,117, 240.Google Scholar
  17. 17.
    Bičák, J. (1968).Proc. Roy. Soc.,A302, 201.Google Scholar
  18. 18.
    Bičák, J., Hoenselaers, C., and Schmidt, B. G. (1983).Proc. Roy. Soc,A390, 397; 411.Google Scholar
  19. 19.
    Fock, V. (1959).The Theory of Space-Time and Gravitation (Pergamon, London), Ch. 6.Google Scholar
  20. 20.
    Damour, T. (1987).The Problem of Motion in Newtonian and Einsteinian Gravity. In300 Years of Gravitation, Hawking, S. W., and Israel, W., eds. (Cambridge University Press).Google Scholar
  21. 21.
    Whittaker, E. T. (1935).Proc. Roy. Soc.,A149, 384.Google Scholar
  22. 22.
    Tolman, R. C. (1934).Relativity, Thermodynamics and Cosmology (Oxford University Press), p. 246.Google Scholar
  23. 23.
    Whittaker, J. M. (1968).Proc. Roy. Soc,A308, 1.Google Scholar
  24. 24.
    Tolman, R. C. (1934).Relativity, Thermodynamics and Cosmology (Oxford University Press), p. 206.Google Scholar
  25. 25.
    Forward, R. L. (1988). Negative matter propulsion (preprint).Google Scholar
  26. 26.
    Tolman, R. C. (1934).Relativity, Thermodynamics and Cosmology (Oxford University Press), p. 265.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • W. B. Bonnor
    • 1
  1. 1.School of Mathematical SciencesQueen Mary CollegeLondonEngland

Personalised recommendations