Journal of Bioenergetics and Biomembranes

, Volume 26, Issue 1, pp 89–99 | Cite as

Structure-function relations for ferredoxin reductase

  • P. Andrew Karplus
  • Christopher M. Bruns
Article

Abstract

Ferredoxin:NADP+ reductase is representative of a large family of flavoenzymes which catalyze the interchange of reducing equivalents between one-electron carriers and the two-electron-carrying nicotinamide dinucleotides. The structure of the enzyme from spinach is known at 1.7 Å resolution and this structure, together with results of chemical modification and site-directed mutagenesis studies, gives insights into features of the structure that are important for function.

Key words

Ferredoxin reductase ferredoxin protein structure structure-function relations site-directed mutagenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aliverti, A., Jansen, T., Zanetti, G., Ronchi, S., Herrmann, R. G., and Curti, B. (1990).Eur. J. Biochem. 191 551–555.Google Scholar
  2. Aliverti, A., Gadda, G., Rochi, S., and Zanetti, G. (1991a).Eur. J. Biochem. 198 21–24.Google Scholar
  3. Aliverti, A., Lübberstedt, T., Zanetti, G., Herrmann, R.G., and Curti, B. (1991b).J. Biol. Chem. 266 17760–17763.Google Scholar
  4. Aliverti, A., Piubella, L., Zanetti, G., Lübberstedt, T., Herrmann, R. G., and Curti, B. (1993a).Biochemistry 32 6374–6380.Google Scholar
  5. Aliverti, A., Piubella, L., Curti, B., and Zanetti, G. (1993b). InFlavins and Flavoproteins (Yagi, K., ed.) in press.Google Scholar
  6. Andrews, S. C., Shipley, D., Keen, J. N., Findlay, J. B. C., Harrison, P. M., and Guest, J. R. (1992).FEBS Lett. 302 247–252.Google Scholar
  7. Aoki, H., and Ida, S. (1992). Gen Bank Accession No. D12815.Google Scholar
  8. Batie, C. J., and Kamin, H. (1984).J. Biol. Chem. 259, 11976-.Google Scholar
  9. Bhattacharyya, A. K., Meyer, T. E., and Tollin, G. (1986).Biochemistry 25 4655–4661.Google Scholar
  10. Bruns, C. M., and Karplus, P. A. (1993). InFlavins and Flavoproteins (Yagi, K., ed.), in press.Google Scholar
  11. Carrillo, N., and Vallejos, R. H. (1983).Trends Biochem. Sci. 8 52–56.Google Scholar
  12. Carrillo, N., and Vallejos, R. H. (1987). InTopics in Photosynthesis, Vol. 8 (Barber, J., ed.), Elsevier, New York, pp. 527–560.Google Scholar
  13. Ceccarelli, E. A., Viale, A. M., Krapp, A. R., and Carrillo, N. (1991).J. Biol. Chem. 266 14283–14287.Google Scholar
  14. Chan, R., Carillo, N., and Vallejos, R. H. (1985).Arch. Biochem. Biophys. 240 172–177.Google Scholar
  15. Cidaria, D., Biondi, P. A., Zanetti, G., and Ronchi, S. (1985).Eur. J. Biochem. 146 295–299.Google Scholar
  16. Correll, C. C., Batie, C. J., Ballou, D. B., and Ludwig, M. L. (1992).Science 258 1604–1610.Google Scholar
  17. Correll, C. C., Ludwig, M. L., Bruns, C. M., and Karplus, P. A. (1993).Protein Science, in press.Google Scholar
  18. Dancis, A., Roman, D. G., Anderson, G. J., Hinnebusch, A. G., and Klausner, R. D. (1992).Proc. Natl. Acad. Sci. USA 89 3869–3873.Google Scholar
  19. De Pascalis, A. R., Jalesarov, I., Ackermann, F., Koppenol, W. H., Hirasawa, M., Knaff, D. B., and Bosshard, H. R. (1993).Protein Sci. 2 1126–1135.Google Scholar
  20. Fillat, M. F., Bakker, H. A. C., and Weisbeek, P. J. (1990).Nucleic Acids Res. 18 7161.Google Scholar
  21. Fillat, M. F., Flores, E., and Gomez-Moreno, C. (1993a).Plant Mol. Biol.,22 725–729.Google Scholar
  22. Fillat, M. F., Pacheco, M. C., Peleato, M. L., and Gomez-Moreno, C. (1993b). InFlavins and Flavoproteins (Yagi, K., ed.), Walter de Gruyter, Berlin, in press.Google Scholar
  23. Foust, G. P., Mayhew, S. G., and Massey, V. (1969).J. Biol. Chem. 244 964–970.Google Scholar
  24. Gadda, G., Aliverti, A., Ronchi, S., and Zanetti, G. (1990).J. Biol. Chem. 265 11955–11959.Google Scholar
  25. Iwaasa, H., Tagaki, T., and Shikama, K. (1992).J. Mol. Biol. 227 948–954.Google Scholar
  26. Jakowitsch, J., Bayer, M., Maier, T., Brandtner, M., Hamiton, B., Neumann-Spallart, C., Luttke, A., Michalowski, C. B., Bohnert, H. J., Schenk, H. E. A., and Löfferhardt, W. (1993). Gen-Bank Accession No. X66732.Google Scholar
  27. Jansen, T., Reilander, J., Steppuhn, J., and Herrmann, R. G. (1988).Curr. Genet. 13 517–522.Google Scholar
  28. Janssens, S. P., Shimouchi, A., Quartermous, T., Bloch, D. B., and Bloch, K. D. (1992).J. Biol. Chem. 267 14519–14522.Google Scholar
  29. Jelesarov, I., De Pascalis, A. R., Koppenol, W. H., Hirasawa, M., Knaff, D. B., and Bosshard, H. R. (1993).Eur. J. Biochem.,216 57–66.Google Scholar
  30. Karplus, P. A. (1990). InFlavins and Flavoproteins (Curti, B., Ronchi, S., and Zanetti, G., eds.), Walter de Gruyter, Berlin, pp. 449–455.Google Scholar
  31. Karplus, P. A., and Schulz, G. (1989).J. Mol. Biol. 210 163–180.Google Scholar
  32. Karplus, P. A., Walsh, K. A., and Herriott, J. R. (1984).Biochemistry 23 6576–6583.Google Scholar
  33. Karplus, P. A., Daniels, M. J., and Herriott, J. R. (1991).Science 251 60–66.Google Scholar
  34. Kierns, J. J., and Wang, J. H. (1972).J. Biol. Chem. 247 7374–7382.Google Scholar
  35. Knaff, D. B., and Hirasawa, M. (1991).Biochim. Biophys. Acta 1056 93–125.Google Scholar
  36. Lee, C. Y., Szittner, R. B., and Meighen, E. A. (1991).Eur. J. Biochem. 201 161–168.Google Scholar
  37. Liu, R., and Zylstra, G. J. (1992).ASM Abstr. 92 262.Google Scholar
  38. Massey, V., Matthews, R. G., Foust, G. P., Howell, L. G., Williams, C. H. Jr., Zanetti, G., and Ronchi, S. (1970). InPyridine Nucleotide Dependent Dehydrogenases (Sund, H., ed.), Springer-Verlag, Berlin, pp. 393–411.Google Scholar
  39. Matthijs, H. C. P., Coughlan, S. J., and Hind, G. (1986).J. Biol. Chem. 261 12154–12159.Google Scholar
  40. Medina, M., Mendez, E., and Gomez-Moreno, C. (1992a).FEBS Lett. 298 25–28.Google Scholar
  41. Medina, M., Mendez, E., and Gomez-Moreno, C. (1992b).Arch. Biochem. Biophys. 299 281–286.Google Scholar
  42. Michalowski, C. B., Schmitt, J. M., and Bohnert, H. J. (1989).Plant Physiol. 89 817–822.Google Scholar
  43. Morigasaki, S., and Wada, K. (1990). InFlavins and Flavoproteins (Curti, B., Ronchi, S., and Zanetti, G., eds.), Walter de Gruyter, Berlin, pp. 461–464.Google Scholar
  44. Nakatani, S., and Shin, M. (1992).Arch. Biochem. Biophys. 291 390–394.Google Scholar
  45. Newman, B. J., and Gray, J. C. (1988).Plant Mol. Biol. 10 511–520.Google Scholar
  46. Ohasi, K., Sakihana, N., Tanaka, A., Shin, M., and Truji, H. (1992). InResearch in Photosynthesis, Vol. I (Murata, N., ed.), Kluwer Academic, Dordrecht, pp. 641–644.Google Scholar
  47. Orellano, E. G., Calcatena, N. B., Carrillo, N., and Ceccarelli, E. A. (1993),J. Biol. Chem. 268 19267–19273.Google Scholar
  48. Ostrowski, J., Wu, J. Y., Ruger, D. C., Miller, B. E., Seigel, L. M., and Kreidich, N. M. (1989).J. Biol. Chem. 264 15726–15737.Google Scholar
  49. Royer-Pokora, B., Kuukel, L. M., Monaco, A. P., Goff, S. C., Newberger, P. E., Baehner, R. L., Cole, F. S., Curnutte, J. T., and Orkin, S. C. (1986).Nature (London) 322 32–38.Google Scholar
  50. Schluchter, W. M., and Bryant, D. A. (1992).Biochemistry 31 3092–3102.Google Scholar
  51. Serre, L., Medina, M., Gomez-Moreno, C., Fonticilla-Camps, J., and Frey, M. (1991).J. Mol. Biol. 218 271–272.Google Scholar
  52. Serre, L., Vellieux, F., Fontecilla-Camps, J., Frey, M., Medina, M., and Gomez-Moreno, C. (1993). InFlavins and Flavoproteins (Yagi, K., ed.) in press.Google Scholar
  53. Shephard, E. A., Palmer, C. N. A., Segall, H. J., and Phillips, I. R. (1992).Arch. Bioch. Biophys. 294 168–172.Google Scholar
  54. Spyrou, G., Haggard-Ljungquist, E., Krook, M., Jornvall, H., Nilsson, E., and Reichard, P. (1991).J. Bacteriol. 173 3673–3679.Google Scholar
  55. Stainthorpe, A. C., Lees, V., Salmond, G. P. C., Dalton, H., and Murrell, J. C. (1990).Gene 91 27–34.Google Scholar
  56. Tsukihara, T., Fukuyama, K., Mizushima, M., Harioka, T., Kusunoki, M. O. Katsube, Y., Hase, T., and Matsubara, M. (1990).J. Mol. Biol. 216 399–410.Google Scholar
  57. Vaucheret, H., Kronenberger, J., Rouze, P., and Caboche, M. (1989).Plant Mol. Biol. 12 597–600.Google Scholar
  58. Viera, B., Colvert, K. K., and Davis, D. J. (1986).Biochim. Biophys. Acta 851 109–122.Google Scholar
  59. Walker, M. C., Pueyo, J. J., Navarro, J. A., Gomez-Moreno, C., and Tollin, G. (1991).Arch. Biochem. Biophys. 287 351–358.Google Scholar
  60. Yao, Y., Tamur, T., Wada, K., Matsabana, H., and Kodo, K. (1984).J. Biochem. 95 1513–1516.Google Scholar
  61. Yao, Y., Wada, W., Takahashi, Y., Katoh, S., and Matsubana, H. (1985).J. Biochem. (Japan)98 1979–1982.Google Scholar
  62. Yubisui, T., Naitoh, Y., Zenno, S., Tamura, M., Takeshita, M., and Sakaki, Y. (1987).Proc. Natl. Acad. Sci. USA 84 3609–3613.Google Scholar
  63. Zanetti, G., and Aliverti, A. (1991). InChemistry and Biochemistry of Flavoenzymes, Vol. 2 (Müller, F., ed.), CRC Press, Boca Raton, Florida, pp. 305–315.Google Scholar
  64. Zanetti, G., and Forti, G. (1969).J. Biol. Chem. 244 4757–4760.Google Scholar
  65. Zanetti, G., Massey, V., and Curti, M. (1983).Eur. J. Biochem. 132 201–205.Google Scholar
  66. Zanetti, G., Morelli, D., Ronchi, S., Aliverti, A., and Curti, B. (1988).Biochemistry 27 3753–3759.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • P. Andrew Karplus
    • 1
  • Christopher M. Bruns
    • 1
  1. 1.Section of Biochemistry, Molecular and Cell BiologyCornell UniversityIthaca

Personalised recommendations