Journal of Bioenergetics and Biomembranes

, Volume 26, Issue 1, pp 49–66 | Cite as

Plastocyanin: Structural and functional analysis

  • Matthew R. Redinbo
  • Todd O. Yeates
  • Sabeeha Merchant


Plastocyanin is one of the best characterized of the photosynthetic electron transfer proteins. Since the determination of the structure of poplar plastocyanin in 1978, the structure of algal (Scenedesmus, Enteromorpha, Chlamydomonas) and plant (French bean) plastocyanins has been determined either by crystallographic or NMR methods, and the poplar structure has been refined to 1.33 Å resolution. Despite the sequence divergence among plastocyanins of algae and vascular plants (e.g., 62% sequence identity between theChlamydomonas and poplar proteins), the three-dimensional structures are remarkably conserved (e.g., 0.76 Å rms deviation in the Cα positions between theChlamydomonas and poplar proteins). Structural features include a distorted tetrahedral copper binding site at one end of an eight-stranded antiparallel β-barrel, a pronounced negative patch, and a flat hydrophobic surface. The copper site is optimized for its electron transfer function, and the negative and hydrophobic patches are proposed to be involved in recognition of physiological reaction partners. Chemical modification, cross-linking, and site-directed mutagenesis experiments have confirmed the importance of the negative and hydrophobic patches in binding interactions with cytochromef and Photosystem I, and validated the model of two functionally significant electron transfer paths in plastocyanin. One putative electron transfer path is relatively short (∼4 Å) and involves the solvent-exposed copper ligand His-87 in the hydrophobic patch, while the other is more lengthy (∼12–15 Å) and involves the nearly conserved residue Tyr-83 in the negative patch.

Key words

Cytochromef Photosystem-I blue-copper proteins cytochromec6 electron transfer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam, Z., and Malkin, R. (1989).Biochim. Biophys. Acta 975 158–163.Google Scholar
  2. Adman, E. T. (1991).Adv. Protein Chem. 42 145–197.Google Scholar
  3. Adman, E. T., and Jensen, L. H. (1981).Israel J. Chem. 21 8–12.Google Scholar
  4. Aitken (1975).Biochem. J. 149 675–683.Google Scholar
  5. Anderson, G. P., Sanderson, D. G., Lee, C. H., Durell, S., Anderson, L. B., and Gross, E. L. (1987).Biochim. Biophys. Acta 894 386–398.Google Scholar
  6. Baker, E. N. (1988).J. Mol. Biol. 203 1071–1095.Google Scholar
  7. Baker, E. N. (1991).J. Inorg. Biochem. 43 162.Google Scholar
  8. Bengis, C., and Nelson, N. (1975).J. Biol. Chem. 250 2783–2788.Google Scholar
  9. Beoku-Betts, D., Chapman, S. K., Knox, C. V., and Sykes, A. G. (1985).Inorg. Chem. 24 1677–1681.Google Scholar
  10. Beratan, D. N., Betts, J. N., and Onuchic, J. N. (1991).Science 252 1285–1288.Google Scholar
  11. Bottin, H., and Mathis, P. (1987).Biochim. Biophys. Acta 892 91–98.Google Scholar
  12. Boulter, D., Haslett, B. G., Peacock, D., Ramshaw, J. A. M., and Scawen, M. D. (1977).Int. Rev. Biochem. 13 3–40.Google Scholar
  13. Briggs, L. M., Pecoraro, V. L., and McIntosh, L. (1990).Plant Mol. Biol. 15 633–642.Google Scholar
  14. Bryant, D. A. (1992). InThe PhotoSystems: Structure, Function and Molecular Biology (Barber, J., ed.), Elsevier Science Publishers, Amsterdam, pp. 501–549.Google Scholar
  15. Canters, G. W., and van de Kamp, M. (1992).Curr. Opinion Struct. Biol. 2 859–869.Google Scholar
  16. Chang, T. K., Iverson, S. A., Rodrigues, C. G., Kiser, C. N., Lew, A. Y. C., Germanas, J. P., and Richards, J. H. (1991).Proc. Natl. Acad. Sci. USA 88 1325–1329.Google Scholar
  17. Chazin, W. J., and Wright, P. E. (1988).J. Mol. Biol. 202 623–636.Google Scholar
  18. Chen, L., Durley, R., Poliks, B. J., Hamada, K., Chen, Z., Mathews, F. S., Davidson, V. L., Satow, Y., Huizinga, E., Vellieux, F. M. D., and Hol, W. G. J. (1992).Biochemistry 31 4959–4964.Google Scholar
  19. Chitnis, P. R., Purvis, D., and Nelson, N. (1991).J. Biol. Chem. 266 20146–20151.Google Scholar
  20. Church, W. B., Guss, J. M., Potter, J. J., and Freeman, H. C. (1986).J. Biol. Chem. 261 234–237.Google Scholar
  21. Church, W. B., Collyer, C. A., Garrett, T. P. J., Guss, J. M., Murata, M., and Freeman, H. C. (1987). InThree-Dimensional Structures and Drug Design (Iitaka, Y., and Itai, A., eds.), University of Tokyo Press, pp. 45–63.Google Scholar
  22. Collyer, C. A., Guss, J. M., Sugimura, Y., Yoshizaki, F., and Freeman, H. C. (1990).J. Mol. Biol. 211 617–632.Google Scholar
  23. Colman, P. M., Freeman, H. C., Guss, J. M., Murata, M., Norris, V. A., Ramshaw, J. A. M., and Venkatappa, M. P. (1978).Nature (London)272 319–324.Google Scholar
  24. Connolly, M. L. (1983).J. Appl Crystallogr. 16 548–558.Google Scholar
  25. Cookson, D. J., Hayes, M. T., and Wright, P. E. (1980a).Nature (London)283 682–683.Google Scholar
  26. Cookson, D. J., Hayes, M. T., and Wright, P. E. (1980b).Biochim. Biophys. Acta 591 162–176.Google Scholar
  27. de Silva, D. G. A. H., Powls, R., and Sykes, A. G. (1988).Biochim. Biophys. Acta 933 460–469.Google Scholar
  28. Driscoll, P. C., Hill, H. A. O., and Redfield, C. (1987).Eur. J. Biochem. 170 279–292.Google Scholar
  29. Durell, S. R., Labanowski, J. K., and Gross, E. L. (1990).Arch., Biochem. Biophys. 277 241–254.Google Scholar
  30. Durley, R., Chen, L., Lim, L. W., Mathews, F. S., and Davidson, V. L. (1993).Protein Sci. 2 739–752.Google Scholar
  31. Garrett, T. P. J., Clingeleffer, D. J., Guss, J. M., Rogers, S. J., and Freeman, H. C. (1984).J. Biol. Chem. 259 2822–2825.Google Scholar
  32. Gazo, J., Bersuker, I. B., Garaj, J., Kabesova, M. Kohout, J., Langfelderova, H., Melnik, M., Serator, M., and Valach, F. (1976).Coord. Chem. Rev. 19 253–297.Google Scholar
  33. Guss, J.M., and Freeman, H.C. (1983).J. Mol. Biol. 169 521–563.Google Scholar
  34. Guss, J. M., Harrowell, P. R., Murata, M., Norris, V. A., and Freeman, H. C. (1986).J. Mol. Biol. 192 361–387.Google Scholar
  35. Guss, J. M., Bartunik, H. D., and Freeman, H. C. (1992).Acta Crystallogr. B48 790–811.Google Scholar
  36. Haehnel, M. (1984).Annu. Rev. Plant Physiol. 35 659–693.Google Scholar
  37. Haehnel, M., Ratajczak, R., and Robenek, H. (1989).J. Cell Biol. 108 1397–1405.Google Scholar
  38. Han, J., Adman, E. T., Beppu, T., Codd, R., Freeman, H. C., Huq, L., Loehr, T. M., and Sanders-Loehr, J. (1991).Biochemistry 30 10904–10913.Google Scholar
  39. Hatakana, H., Sonoike, K., Hirano, M., and Katoh, S. (1993).Biochim. Biophys. Acta 1141 45–51.Google Scholar
  40. He, S., Modi, S., Bendall, D. S., and Gray, J. C. (1991).EMBO J. 10 4011–4016.Google Scholar
  41. Hippler, M., Ratajczak, R., and Haehnel, W. (1989).FEBS Lett. 250 280–284.Google Scholar
  42. Ho, K. K. and Krogmann, D. W. (1984).Biochim. Biophys. Acta 766 310–316.Google Scholar
  43. Jackman, M. P., Sinclair-Day, J. D., Sisley, M. J., Sykes, A. G., Denys, L. A., and Wright, P. E. (1987).J. Am. Chem. Soc. 109 6443–6449.Google Scholar
  44. Jackman, M. P., McGinnis, J., Powls, R., Salmon, G. A., and Sykes, A. G. (1988).J. Am. Chem. Soc. 110 5880–5887.Google Scholar
  45. Kabsch, W. (1978).Acta Crystallogr. A34 827–828.Google Scholar
  46. Karlsson, B. G., Nordling, M., Pascher, T., Tsai, L., Sjölin, L., and Lundberg, L. G. (1991).Protein Eng. 4 343–349.Google Scholar
  47. Katoh, S., Shiratori, I., and Takamiya, A. (1962).J. Biochem. (Tokyo)51 32–40.Google Scholar
  48. Korszun, Z. R. (1987).J. Mol. Biol. 196 413–419.Google Scholar
  49. Kraulis, P. J. (1991).J. Appl. Crystallogr. 24 946–950.Google Scholar
  50. Krauss, N., Hinrichs, W., Witt, I., Fromme, D., Pritzkow, W., Dauter, Z., Betzel, C., Wilson, K. S., Witt, H. T., and Saenger, W. (1993).Nature (London)361 326–331.Google Scholar
  51. Last, D. I., and Gray, J. C. (1990).Plant Mol. Biol. 14 229–238.Google Scholar
  52. Li, H. H., and Merchant, S. (1992).J. Biol. Chem. 267 9368–9375.Google Scholar
  53. Martinez, S. E., Szczepaniak, A., Smith, J. L., and Cramer, W. A. (1991).Biophys. J. 59, 524a.Google Scholar
  54. Merchant, S., and Bogorad, L. (1986).Mol. Cell. Biol. 6 462–469.Google Scholar
  55. Merchant, S., Hill, K., Kim, J. H., Thompson, J., Zaitlin, D., and Bogorad, L. (1990).J. Biol. Chem. 265 12372–12379.Google Scholar
  56. Modi, S., Nordling, M., Lundberg, L. G., Hansson, O., and Bendall, D. S. (1992a).Biochim. Biophys. Acta 1102 85–90.Google Scholar
  57. Modi, S., McLaughlin, E., Bendall, D. S., He, S., and Gray, J. C. (1992b).Bull. Magn. Reson. 14 159–164.Google Scholar
  58. Moore, J. M., Chazin, W. J., Powls, R., and Wright, P. E. (1988).Biochemistry 27 7806–7816.Google Scholar
  59. Moore, J. M., Lepre, C. A., Gippert, G. P., Chazin, W. J., Case, D. A., and Wright, P. E. (1991).J. Mol. Biol. 221 533–555.Google Scholar
  60. Morand, L. Z., Frame, M. Z., Colvert, K. K., Johnson, D. A., Krogmann, D. W., and Davis, D. J. (1989).Biochemistry 28 8039–8047.Google Scholar
  61. Moser, C. C., Keske, J. M., Warncke, K., Faird, R. S., and Dutton, P. L. (1992).Nature (London)355 796–802.Google Scholar
  62. Murphy, L. M., Strange, R. W., Karlsson, B. G., Lundberg, L. G., Pascher, T., Reinhammar, B., and Hasnain, S. S. (1993).Biochemistry 32 1965–1975.Google Scholar
  63. Nar, H., Messerschmidt, A., Huber, R., van de Kamp, M., and Canters, G. W. (1991).J. Mol. Biol. 218 327–330.Google Scholar
  64. Nar, H., Huber, R., Messerschmidt, A., Filippou, A. G., Barth, M., Jaquinod, M., van de Kamp, M., and Canters, G. W. (1992a).Eur. J. Biochem. 205 1123–1129.Google Scholar
  65. Nar, H., Messerschmidt, A., Huber, R., van de Kamp, M., and Canters, G. W. (1992b).FEBS Lett. 306 119–124.Google Scholar
  66. Nar, H., Messerschmidt, A., Huber, R., van de Kamp, M., and Canters, G. W. (1992c).J. Mol. Biol. 221 765–772.Google Scholar
  67. Nielson, O. S., and Gausing, K. (1987).FEBS Lett. 225 159–162.Google Scholar
  68. Nordling, M., Olausson, T., and Lundberg, L. G. (1990).FEBS Lett. 276 98–102.Google Scholar
  69. Nordling, M., Sigfridsson, K., Young, S., Lundberg, L. G., and Hansson, O. (1991).FEBS Lett. 291 327–330.Google Scholar
  70. Petratos, K., Dauter, Z., and Wilson, K. S. (1988).Acta Crystallogr. B44 628–636.Google Scholar
  71. Qin, L., and Kostic, N. M. (1992).Biochemistry 31 5145–5150.Google Scholar
  72. Qin, L., and Kostic, N. M. (1993).Biochemistry 32 6073–6080.Google Scholar
  73. Quinn, J., Li, H. H., Singer, J., Morimoto, B., Mets, L., Kindle, K., and Merchant, S. (1993).J. Biol. Chem. 268 7832–7841.Google Scholar
  74. Redinbo, M. R., Cascio, D., Choukair, M. K., Rice, D., Merchant, S., and Yeates, T. O. (1993).Biochemistry,32 10560–10567.Google Scholar
  75. Roberts, V. A., Freeman, H. C., Olson, A. J., Tainer, J. A., and Getzoff, E. D. (1991).J. Biol. Chem. 266 13431–13441.Google Scholar
  76. Romero, A., Hoitink, C. W. G., Nar, H., Huber, R., Messerschmidt, A., and Canters, G. W. (1993).J. Mol. Biol. 229 1007–1021.Google Scholar
  77. Sandmann, G., Reck, H., Kessler, E., and Böger, P. (1983).Arch. Microbiol. 134 23–27.Google Scholar
  78. Segal, M. G., and Sykes, A. G. (1978).J. Am. Chem. Soc. 100 4585–4592.Google Scholar
  79. Solomon, E. I., and Lowery, M. D. (1993).Science 259 1575–1581.Google Scholar
  80. Steppuhn, J., Hermans, J., Nechushtai, R., Ljungberg, V., Thummler, F., Lottspeich, F., and Herrmann, R. G. (1988).FEBS Lett. 237 218–224.Google Scholar
  81. Sykes, A. G. (1985).Chem. Soc. Rev. 14 283–315.Google Scholar
  82. Sykes, A. G. (1991).Struct. Bonding 75 175–224.Google Scholar
  83. Takabe, T., and Ishikawa, H. (1989).J. Biochem. 105 98–102.Google Scholar
  84. Takabe, T., Ishikawa, H., Niwa, S., and Itoh, S. (1993).J. Biochem. (Tokyo)94 1901–1911.Google Scholar
  85. Takabe, T., Ishikawa, H., Niwa, S., and Tanaka, Y. (1984).J. Biochem. (Tokyo)96 385–393.Google Scholar
  86. Ugurbil, K., Norton, R. S., Allerhand, A., and Bersohn, R. (1977).Biochemistry 16 886–894.Google Scholar
  87. van de Kamp, M., Silverstrini, M. C., Brunori, M., Van Beeumen, J., Hali, F. C., and Canters, G. W. (1990).Eur. J. Biochem. 194 109–118.Google Scholar
  88. Widger, W. R. (1991).Photosynth. Res. 30 71–84.Google Scholar
  89. Wood, P. M., (1978).Eur. J. Biochem. 87 9–19.Google Scholar
  90. Wynn, R. M., and Malkin, R. (1988).Biochemistry 27 5863–5869.Google Scholar
  91. Wynn, R. M., Omaha, J., and Malkin, R. (1989).Biochemistry 28 5554–5560.Google Scholar
  92. Zhou, J. S., and Kostic, N. M. (1993).Biochemistry 32 4539–4546.Google Scholar
  93. Zhou, J. S., Brothers, H. M., Neddersen, J. P., Peerey, L. M., Cotton, T. M., and Kostic, N. M. (1992).Bioconjugate Chem. 3 382–390.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Matthew R. Redinbo
    • 1
  • Todd O. Yeates
    • 1
  • Sabeeha Merchant
    • 1
  1. 1.Department of Chemistry and Biochemistry and Molecular Biology InstituteUniversity of CaliforniaLos Angeles

Personalised recommendations