Journal of Bioenergetics and Biomembranes

, Volume 26, Issue 1, pp 31–47

Structural aspects of the cytochromeb6f complex; structure of the lumen-side domain of cytochromef

  • W. A. Cramer
  • S. E. Martinez
  • D. Huang
  • G. -S. Tae
  • R. M. Everly
  • J. B. Heymann
  • R. H. Cheng
  • T. S. Baker
  • J. L. Smith
Article

Abstract

The following findings concerning the structure of the cytochromeb6f complex and its component polypeptides, cytb6, subunit IV and cytochromef subunit are discussed:
  1. (1)

    Comparison of the amino acid sequences of 13 and 16 cytochromeb6 and subunit IV polypeptides, respectively, led to (a) reconsideration of the helix lengths and probable interface regions, (b) identification of two likely surface-seeking helices in cytb6 and one in SU IV, and (c) documentation of a high degree of sequence invariance compared to the mitochondrial cytochrome. The extent of identity is particularly high (88% for conserved and pseudoconserved residues) in the segments of cytb6 predicted to be extrinsic on then-side of the membrane.

     
  2. (2)

    The intramembrane attractive forces betweentrans-membrane helices that normally stabilize the packing of integral membrane proteins are relatively weak.

     
  3. (3)

    The complex isolated in dimeric form has been visualized, along with isolated monomer, by electron microscopy. The isolated dimer is much more active than the monomer, is the major form of the complex isolated and purified from chloroplasts, and is inferred to be a functional form in the membrane.

     
  4. (4)

    The isolated cytb6f complex contains one molecule of chlorophylla.

     
  5. (5)

    The structure of the 252 residue lumen-side domain of cytochromef isolated from turnip chloroplasts has been solved by X-ray diffraction analysis to a resolution of 2.3 Å.

     

Key words

Cytochromebc1 electron transfer energy transduction membrane protein structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bald, D., Kruip, J., Boekema, E. J., and Rögner, M. (1992).Research in Photosynthesis (Murata, N., ed.), Kluwer, Dordrecht, Vol. I, pp. 629–632.Google Scholar
  2. Beattie, D. S. (1993).J. Bioenerg. Biomembr. 25, 233–244.Google Scholar
  3. Bechmann, G., Weiss, H., and Rich, P. R. (1992).Eur. J. Biochem. 208, 315–325.Google Scholar
  4. Bergstrom, J., and T. Vanngard (1982).Biochim. Biophys. Acta 682, 452–456.Google Scholar
  5. Bormann, B. J., and Engelman, D. E. (1992).Annu. Rev. Biophys. Biophys. Chem. 19, 369–403.Google Scholar
  6. Brand, S. N., Tan, X., and Widger, W. R. (1992).Plant Mol. Biol. 20, 481–491.Google Scholar
  7. Breyton, C., de Vitry, C., and Popot, J.-L. (1994)J. Biol. Chem., in press.Google Scholar
  8. Büschlen, S., Choquet, Y., Kuras, R., and Wollman, F. A. (1991).FEBS Lett. 284, 257–262.Google Scholar
  9. Canals, F. (1992).Biochemistry 31, 4493–4501.Google Scholar
  10. Chain, R., and Malkin, R. (1991).Photosynth. Res. 28, 59–68.Google Scholar
  11. Cote, J.-C., Wu, N.-H., and Wu, R. (1988).Plant Mol. Biol. 11, 873–874.Google Scholar
  12. Cramer, W. A., Black, M. T., Widger, W. R., and Girvin, M. E. (1987).The Light Reactions (Barber, J., ed.), Elsevier, Amsterdam, pp. 446–493.Google Scholar
  13. Cramer, W. A., Furbacher, P. N., Szczepaniak, A., and Tae, G.-S. (1991).Current Topics in Bioenergetics, Vol. 16 (Lee, C. P., ed.), Academic Press, Orlando, pp. 179–222.Google Scholar
  14. Cramer, W. A., Engelman, D. M., von Heijne, G., and Rees, D. C. (1992).FASEB J. 6, 3397–3402.Google Scholar
  15. Crofts, A. R. (1985).The Enzymes of Biological Membranes (Martinosi, A., ed.), 2nd edn, Vol. 4, Plenum Press, New York, pp. 347–382.Google Scholar
  16. Crofts, A. R., Robinson, H., Andrews, K., Van Doren, S., and Berry, E. (1987).Cytochrome Systems: Molecular Biology and Bioenergetics (Papa, S., Chance, B., and Ernster, L., eds.), Plenum Press, New York, pp. 617–624.Google Scholar
  17. Crofts, A. R., Wang, Z., Chen, Y., Mahalingam, S., Yun, C. H., and Gennis, R. B. (1990).Highlights in Ubiquinone Research (Lenaz, G., ed.), Taylor and Francis, London, pp. 98–103.Google Scholar
  18. Crowder, M. S., Prince, R. C., and Bearden, A. (1982).FEBS Lett. 144, 204–208.Google Scholar
  19. Daldal, F., Tokito, M. K., Davidson, E., and Faham, M. (1989).EMBO J. 8, 3951–3961.Google Scholar
  20. Davis, D. J., Frame, M. K., and Johnson, D. A. (1988).Biochim. Biophys. Acta 936, 61–66.Google Scholar
  21. Degli Esposti, M., DeVries, S., Crimi, M., Ghelli, A., Patarnello, T., and Meyer, A. (1993).Biochim. Biophys. Acta 1143, 243–271.Google Scholar
  22. Deisenhofer, J., and Michel, H. (1989).EMBO J. 8, 2149–2169.Google Scholar
  23. de Vries, S., Albracht, S. P. J., Berden, J. A., Marres, C. A. M., and Slater, E. C. (1983).Biochim. Biophys. Acta 723, 91–103.Google Scholar
  24. diRago, J. P., and Colson, A.-M. (1988).J. Biol. Chem. 263, 12564–12570.Google Scholar
  25. Eisenberg, D. (1984).Annu. Rev. Biochem. 53, 595–623.Google Scholar
  26. Fukuzawa, H., Yoshida, T., Kohchi, T., Okumura, T., Sawano, Y., and Ohyama, K. (1987).FEBS Lett. 220, 61–66.Google Scholar
  27. Furbacher, P. N., Girvin, M. E., and Cramer, W. A. (1989).Biochemistry 28, 8990–8998.Google Scholar
  28. Gal, A., Mets, L. J., and Ohad, I. (1990a).Current Research in Photosynthesis (Baltscheffsky, M., ed.), Vol. II, Kluwer Academic, Dordrecht, pp. 779–781.Google Scholar
  29. Gal, A., Mor, T. S., Hauska, G., Herrmann, R., and Ohad, I. (1990b).Current Research in Photosynthesis (Baltscheffsky, M., ed.), Vol. II, Kluwer Academic, Dordrecht, pp. 783–785.Google Scholar
  30. Gavel, Y., Steppuhn, J., Herrmann, R., and von Heijne, G. (1991).FEBS Lett. 282, 41–46.Google Scholar
  31. Gennis, R. B., Barquera, B., Hacker, B., Van Doren, S. R., Arnaud, S., Crofts, A. R., Davidson, E., Gray, K. R., and Daldal, F. (1993).J. Bioenerg. Biomembr. 25, 195–209.Google Scholar
  32. Girvin, M. E., and Cramer, W. A. (1984).Biochim. Biophys. Acta 767, 29–38.Google Scholar
  33. Glaser, E. A., and Crofts, A. R. (1984).Biochim. Biophys. Acta 766, 322–333.Google Scholar
  34. Gonzalez-Halphen, D., Lindorfer, M. A., and Capaldi, R. A. (1988).J. Biol. Chem. 27, 7021–7031.Google Scholar
  35. Graham, L. A., Brandt, U., Sargent, J. S., and Trumpower, B. L. (1993).J. Bioenerg. Biomembr. 25, 245–257.Google Scholar
  36. Grasberger, B., Minton, A. P., DeLisi, C., and Metzger, H. (1986).Proc. Natl. Acad. Sci. USA 83, 6258–6262.Google Scholar
  37. Gray, J. C. (1978).Eur. J. Biochem. 82, 133–141.Google Scholar
  38. Gray, J. C. (1992).Photosynth. Res. 34, 359–374.Google Scholar
  39. Gray, K. A., and Daldal, F. (1993).Biophys. J. 64, 105a.Google Scholar
  40. Greer, K. L., and Golden, S. S. (1992).Plant Mol. Biol. 19, 355–365.Google Scholar
  41. Gross, E. L. (1993).Photosyn. Res. 37, 103–116.Google Scholar
  42. Hacker, B., Barquera, B., Crofts, A. R., and Gennis, R. B. (1993).Biophys. J. 64, 105a.Google Scholar
  43. Haley, J., and Bogorad, L. (1989).Proc. Natl. Acad. Sci. USA 86, 1534–1538.Google Scholar
  44. Hauska, G., Hurt, E., Gabellini, N., and Lockau, W. (1983).Biochim. Biophys. Acta 726, 97–133.Google Scholar
  45. Hauska, G., Nitschke, W., and Herrmann, R. G. (1988).J. Bioenerg. Biomem. 20, 211–228.Google Scholar
  46. Heinemeyer, W., Alt, J., and Herrmann, R. G. (1984).Curr. Genet. 8, 543–549.Google Scholar
  47. Hiratsuka, J., Shimada, H., Whittier, R., Ishibashi, T., Sakamoto, M., Mori, M., Kondo, C., Honji, Y., Sun, C. R., Meng, B. Y., Li, Y. Q., Kanno, A., Nishizawa, Y., Hirai, A., Shinozaki, K., and Sugiura, M. (1989).Mol. Gen. Genet. 217, 185–194.Google Scholar
  48. Hird, S. M., Webber, A. N., Wilson, R. J., Dyer, T. A., and Gray, J. C. (1991).Plant Mol. Biol. 16, 745–747.Google Scholar
  49. Ho, K. K., and Krogmann, D. W. (1980).J. Biol. Chem. 255, 3855–3861.Google Scholar
  50. Hope, A. B. (1993).Biochim. Biophys. Acta 1143, 1–22.Google Scholar
  51. Howell, N., and Gilbert, K. (1988).J. Mol. Biol. 203, 607–618.Google Scholar
  52. Huang, D. H., Everly, M., Cheng, R. H., Heymann, J. B., Schägger, H., Baker, T. S., and Cramer, W. A. (1993). Submitted.Google Scholar
  53. Hurt, E. C., and Hauska, G. (1983).FEBS Lett. 153, 413–419.Google Scholar
  54. Jacobs, R. E., and White, S. H. (1989).Biochemistry 8, 3421–3437.Google Scholar
  55. Johnson, E. M., Schabelrauch, L. S., and Sears, B. B. (1991).Mol. Gen. Genet. 225, 106–112.Google Scholar
  56. Joliot, P., and Joliot, A. (1988).Biochim. Biophys. Acta 933, 319–333.Google Scholar
  57. Kallas, T., Spiller, S., and Malkin, R. (1988).J. Biol. Chem. 263, 14334–14342.Google Scholar
  58. Kirwin, P. M., Elderfield, P. D., Williams, R. S., and Robinson, C. (1991).J. Biol. Chem. 263, 18128–18132.Google Scholar
  59. Kramer, D. M., and Crofts, A. R. (1990).Curr. Res. Photosyn. (Baltscheffksy, M., ed.), Vol. III, Kluwer Academic, Dordrecht, pp. 283–286.Google Scholar
  60. Kramer, D. M., and Crofts, A. R. (1992).Res. Photosyn. (N. Murata, ed.) II, pp. 491–494, Kluwer, Dordrecht.Google Scholar
  61. Kück, U. (1989).Mol. Gen. Genet. 218, 257–265.Google Scholar
  62. Kutoh, E., and Sone, N. (1988).J. Biol. Chem. 263, 9020–9026.Google Scholar
  63. Lemmon, M. A., Flanagan, J. M., Hunt, J. F., Adair, B. D., Bormann, B. J., and Engelman, D. E. (1992).J. Biol. Chem. 267, 7683–7689.Google Scholar
  64. Leonard, K., Wingfield, P., Arod, T., and Weiss, H. (1981).J. Mol. Biol. 149, 259–274.Google Scholar
  65. Li, L.-B., Zou, Y.-P., Yu, L., and Yu, C.-A. (1991).Biochim. Biophys. Acta 1057, 215–222.Google Scholar
  66. Link, T. A., Haase, U., Brandt, U., and von Jagow, G. (1993).J. Bioenerg. Biomembr. 25, 221–232.Google Scholar
  67. Martinez, S. E., Szczepaniak, A., Smith, J. L., and Cramer, W. A. (1991).Biophys. J. 59, 524a.Google Scholar
  68. Martinez, S. E., Smith, J. L., Huang, D., Szczepaniak, A., and Cramer, W. A. (1992).Research in Photosynthesis (Murata, N., ed.), Vol. II, Kluwer Academic, Dordrecht, pp. 495–498.Google Scholar
  69. Martinez, S. E., Huang, D., Szczepaniak, A., Cramer, W. A., and Smith, J. L. (1993). Manuscript in preparation.Google Scholar
  70. Milburn, M. V., Prive, G. G., Milligan, D. L., Scott, W. G., Yeh, J., Jancarik, J., Koshland, D. E., Jr., and Kim, S. H. (1991).Science 254, 1342–1347.Google Scholar
  71. Morand, L., Frame, M. K., Colvert, K. K., Johnson, D. A., Krogmann, D. W., and Davis, D. J. (1989).Biochemistry 28, 8039–8047.Google Scholar
  72. Mörschel, E., and Staehelin, A. (1983).J. Cell Biol. 97, 301–310.Google Scholar
  73. Nalecz, M. J., and Azzi, A. (1985).Arch. Biochem. Biophys. 240, 921–931.Google Scholar
  74. Nieboer, P., and Berden, J. A. (1992).Biochim. Biophys. Acta 1101, 90–96.Google Scholar
  75. Nitschke, W., Hauska, G., and Crofts, A. R. (1988).FEBS Lett. 232, 204–208.Google Scholar
  76. Ohnishi, T., Schägger, H., Meinhardt, S. W., LoBrutto, R., Link, T. A., and von Jagow, G. (1989).J. Biol. Chem. 264, 735–744.Google Scholar
  77. Osiewacz, H. D. (1992).Arch. Microbiol. 157, 336–342.Google Scholar
  78. Pakula, A., and Simon, M. (1992).Nature 355, 496–497.Google Scholar
  79. Pfanner, N., and Neupert, W. (1990).Annu. Rev. Biochem. 59, 331–353.Google Scholar
  80. Phillips, A. C., and Gray, J. C. (1984).Mol. Gen. Genet. 194, 477–484.Google Scholar
  81. Piccioni, R., Bellemare, G., and Chua, N.-H. (1982).Methods in Chloroplast Molecular Biology (Edelman, M.et al., eds.), Chap. 80, pp. 985–1015.Google Scholar
  82. Popot, J.-L., and Engelman, D. E. (1990).Biochemistry 29, 4031–4039.Google Scholar
  83. Qin, L., and Kostic, N. M. (1993).Biochemistry 32, 6073–6080.Google Scholar
  84. Redinbo, M. R., Yeates, T. O., and Merchant, S. (1994).J. Bioenerg. Biomem., in press.Google Scholar
  85. Reimann, A., and Kueck, U. (1989).Plant Mol. Biol. 13, 255–256.Google Scholar
  86. Reverdatto, S. V., Andreeva, A. V., Buryakova, A. A., Chakhmakhcheva, O. G., and Efimov, V. A. (1989).Nucleic Acids Res. 17, 2859–2860.Google Scholar
  87. Rich, P. R., Madgwick, S. A., and Moss, D. A. (1991).Biochim. Biophys. Acta 1058, 312–328.Google Scholar
  88. Rich, P., Madgwick, S. A., Brown, S., von Jagow, G., and Brandt, U. (1992).Photosynth. Res. 34, 465–477.Google Scholar
  89. Riedel, A., Rutherford, W., Hauska, G., Müller, A., and Nitschke, W. (1991).J. Biol. Chem. 266, 17838–17844.Google Scholar
  90. Rigby, S. E. J., Moore, G. R., Gray, J. C., Godsby, P. M. A., George, S. J., and Thomson, A. J. (1988).Biochem. J. 256, 571–577.Google Scholar
  91. Robertson, D. E., and Dutton, P. L. (1988).Biochim. Biophys. Acta 935, 273–291.Google Scholar
  92. Robertson, D. E., Daldal, F., and Dutton, P. L. (1990).Biochemistry 29, 11249–11260.Google Scholar
  93. Rock, C. D., Barkan, A., and Taylor, W. C. (1987).Curr. Genet. 12, 69–77.Google Scholar
  94. Saraste, M. (1984).FEBS Lett. 166, 367–372.Google Scholar
  95. Schägger, H., and von Jagow, G. (1991).Anal. Biochem. 199, 223–231.Google Scholar
  96. Schlunegger, B., and Stutz, E. (1984).Curr. Genet. 8, 629–634.Google Scholar
  97. Schmitt, M. E., and Trumpower, B. L. (1990).J. Biol. Chem. 265, 17005–17011.Google Scholar
  98. Selak, M. A., and Whitmarsh, J. (1982).FEBS Lett. 150, 286–292.Google Scholar
  99. Shinozaki, K., Ohme, M., Tanaka, M., Wakasugi, T., Hayashida, N., Matsubayashi, T., Zaita, N., Chunwongse, J., Obokata, J., Yamaguchi-Shinozaki, K., Ohto, C., Torazawa, K., Meng, B. Y., Sugita, M., Deno, H., Kamogashira, T., Yamada, K., Kusuda, J., Takaiwa, F., Kato, A., Tohdoh, N., Shimda, H., and Sugiura, M. (1986).EMBO J. 5, 2043–2049.Google Scholar
  100. Shiver, J. W., Peterson, A. A., Widger, W. R., and Cramer, W. A. (1989).Methods Enzymol. 172, 439–461.Google Scholar
  101. Siedow, J. N., Vickery, L. E., and Palmer, G. (1980).Arch. Biochem. Biophys. 203, 101–107.Google Scholar
  102. Simpkin, D., Palmer, G., Devlin, F. J., McKenna, M. C., Jensen, G. M., and Stephens, P. J. (1989).Biochemistry 28, 8033–8039.Google Scholar
  103. Szczepaniak, A., and Cramer, W. A. (1990).J. Biol. Chem. 265, 17720–17726.Google Scholar
  104. Szczepaniak, A. D., Huang, D., Keenan, T. W., and Cramer, W. A. (1991).EMBO J. 10, 2757–2764.Google Scholar
  105. Thony-Meyer, L., James, P., and Hennecke, H. (1991).Proc. Natl Acad. Sci. USA,88, 5001–5005.Google Scholar
  106. Trumpower, B. L. (1990).J. Biol. Chem. 265, 11409–11412.Google Scholar
  107. Turmel, M., Boulanger, J., and Bergeron, A. (1989).Nucleic Acids Res. 17, 3593–3593.Google Scholar
  108. Verner, K., and Schatz, G. (1988).Science 241, 1307–1313.Google Scholar
  109. Von Jagow, G., and Sebald, W. (1980).Ann. Rev. Biochem. 49, 281–314.Google Scholar
  110. Von Heijne, G. (1992).J. Mol. Biol. 225, 487–494.Google Scholar
  111. Weiss, H., and Kolb, H. J. (1979).Eur. J. Biochem. 99, 139–149.Google Scholar
  112. Widger, W. R., Cramer, W. A., Herrmann, R., and Trebst, A. (1984).Proc. Natl. Acad. Sci. USA 81, 674–678.Google Scholar
  113. Widger, W. R., and Cramer, W. A. (1991).Cell Culture and Somatic Cell Genetics of Plants: The Molecular Biology of Plastids and the Photosynthetic Apparatus (Vasil, I. K., and Bogorad, L., eds.), Academic Press, Orlando, pp. 149–176.Google Scholar
  114. Willey, D. L., Auffret, A. D., and Gray, J. C. (1984).Cell 36, 555–562.Google Scholar
  115. Yang, M., and Trumpower, B. L. (1993).J. Biol. Chem., in press.Google Scholar
  116. Yun, C.-H., Van Doren, S. R., Crofts, A. R., and Gennis, R. B. (1991).J. Biol. Chem.,266, 10967–10973.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • W. A. Cramer
    • 1
  • S. E. Martinez
    • 1
  • D. Huang
    • 1
  • G. -S. Tae
    • 1
  • R. M. Everly
    • 1
  • J. B. Heymann
    • 1
  • R. H. Cheng
    • 1
  • T. S. Baker
    • 1
  • J. L. Smith
    • 1
  1. 1.Department of Biological SciencesPurdue UniversityWest Lafayette

Personalised recommendations