Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 22, Issue 3, pp 451–471 | Cite as

Lipoproteins in bacteria

  • Shigeru Hayashi
  • Henry C. Wu
Mini-Review

Abstract

Covalent modification of membrane proteins with lipids appears to be ubiquitous in all living cells. The major outer membrane (Braun's) lipoprotein ofE. coli, the prototype of bacterial lipoproteins, is first synthesized as a precursor protein. Analysis of signal sequences of 26 distinct lipoprotein precursors has revealed a consensus sequence of lipoprotein modification/processing site of Leu-(Ala, Ser)-(Gly, Ala)-Cys at − 3 to + 1 positions which would represent the cleavage region of about three-fourth of all lipoprotein signal sequences in bacteria. Unmodified prolipoprotein with the putative consensus sequence undergoes sequential modification and processing reactions catalyzed by glyceryl transferase, O-acyl transferase(s), prolipoprotein signal peptidase (signal peptidase II), and N-acyl transferase to form mature lipoprotein. Like all exported proteins, the export of lipoprotein requires functional SecA, SecY, and SecD proteins. Thus all precursor proteins are exported through a common pathway accessible to both signal peptidase I and signal peptidase II. The rapidly increasing list of lipid-modified proteins in both prokaryotic as well as eukaryotic cells indicates that lipoproteins comprise a diverse group of structurally and functionally distinct proteins. They share a common structural feature which is derived from a common biosynthetic pathway.

Key Words

Lipoprotein posttranslational modification signal pepidase II fatty acylation glyceride modification phospholipids acyl transferase protein translocation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderegg, R. J., Betz, R., Carr, S. A., Crabb, J. W., and Duntze, W. (1988).J. Biol. Chem. 263, 18236–18240.Google Scholar
  2. Anderson, B. E., Regnery, R. L., Carlone, G. M., Tzianbos, T., McDade, J. E., Fu, Z. Y., and Bellini, W. J. (1987).J. Bacteriol. 169, 2385–2390.Google Scholar
  3. Bergström, S., Bundoc, V. G., and Barbour, A. G. (1989).Mol. Microbiol. 3, 479–486.Google Scholar
  4. Braun, V., and Rehn, K. (1969).Eur. J. Biochem. 10, 426–438.Google Scholar
  5. Braun, V., and Wolff, H. (1970).Eur. J. Biochem. 14, 387–391.Google Scholar
  6. Braun, V., Bosch, V., Klumpp, E. R., Neff, I., Mayer, H., and Schlecht, S. (1976).Eur. J. Biochem. 62, 555–566.Google Scholar
  7. Casey, P. J., Solski, P. A., Der, C. J., and Buss, J. E. (1989).Proc. Natl. Acad. Sci. USA 86, 8323–8327.Google Scholar
  8. Cavard, D., Lloubes, R., Morlon, J., Chartier, M., and Lazdunski, C. (1985).Mol. Gen. Genet. 199, 95–100.Google Scholar
  9. Chapon, C., and Raibaud, O. (1985).J. Bacteriol. 164, 639–645.Google Scholar
  10. Chattopadhyay, P. K., and Wu, H. C. (1977).Proc. Natl. Acad. Sci. USA 74, 5318–5322.Google Scholar
  11. Chattopadhyay, P. K., Lai, J. S., and Wu, H. C. (1979).J. Bacteriol. 137, 309–312.Google Scholar
  12. Chen, R., and Henning, U. (1987).Eur. J. Biochem. 163, 73–77.Google Scholar
  13. Chen, L., Rhoads, D., and Tai, P. C. (1985).J. Bacteriol. 161, 973–980.Google Scholar
  14. Ching, G., and Inouye, M. (1986).J. Biol. Chem. 261, 4600–4606.Google Scholar
  15. Choi, P.-S., Yamada, H., Mizuno, T., and Mizushima, S. (1986).J. Biol. Chem. 261, 8953–8957.Google Scholar
  16. Cole, S. T., Saint-Joanis, B., and Pugsley, A. P. (1985).Mol. Gen. Genet. 198, 465–472.Google Scholar
  17. Collier, D. N., Bankaitis, V. A., Weiss, J. B., and Bassford, P. J., Jr. (1988).Cell 53, 273–283.Google Scholar
  18. Cornelis, P., Bouia, A., Belarbi, A., Guyonvarch, A., Kammerer, B., Hannaert, V., and Hubert, J. C. (1989).Mol. Microbiol. 3, 421–428.Google Scholar
  19. Deich, R. A., Metcalf, B. J., Finn, C. W., Farley, J. E., and Green, B. A. (1988).J. Bacteriol. 170, 489–498.Google Scholar
  20. d'Enfert, C., and Pugsley, A. P. (1987).Mol. Microbiol. 1, 159–168.Google Scholar
  21. d'Enfert, C., and Pugsley, A. P. (1989).J. Bacteriol. 171, 3673–3679.Google Scholar
  22. d'Enfert, C., Pyter, A., and Pugsley, A. P. (1987).EMBO J. 6, 3531–3538.Google Scholar
  23. de Vrije, T., de Swart, R. L., Dowhan, W., Tommassen, J., and de Kruijff, B. (1988).Nature (London)334, 173–175.Google Scholar
  24. Dev, I. K., and Ray, P. H. (1984).J. Biol. Chem. 259, 11114–11120.Google Scholar
  25. Dev, I. K., Harvey, R. J., and Ray, P. H. (1985).J. Biol. Chem. 260, 5891–5894.Google Scholar
  26. Duchene, M., Barron, C., Schweizer, A., von Specht, B.-U., and Domedy, H. (1989).J. Bacteriol. 171, 4130–4137.Google Scholar
  27. Dudler, R., Schmidhauser, C., Parish, R. W., Wettenhall, R. E. H., and Schmidt, T. (1988).EMBO J. 7, 3963–3970.Google Scholar
  28. Duronio, R. J., Towler, D. A., Heuckeroth, R. O., and Gordon, J. I. (1989).Science 243, 796–800.Google Scholar
  29. Ferguson, M. A. J., and Williams, A. F. (1988).Annu. Rev. Biochem. 57, 285–320.Google Scholar
  30. Finlay, B. B., and Paranchych, W. (1986).J. Bacteriol. 166, 713–721.Google Scholar
  31. Garcia, P. D., Ghrayeb, J., Inouye, M., and Walter, P. (1987).J. Biol. Chem. 262, 9463–9468.Google Scholar
  32. Gardel, C., Benson, S., Hunt, J., Michaelis, S., and Beckwith, J. (1987).J. Bacteriol. 169, 12186–12190.Google Scholar
  33. Ghrayeb, J., and Inouye, M. (1984).J. Biol. Chem. 259, 463–467.Google Scholar
  34. Ghrayeb, J., Lunn, C. A., Inouye, S., and Inouye, M. (1985).J. Biol. Chem. 260, 10961–10965.Google Scholar
  35. Giam, C. Z., Chai, T., Hayashi, S., and Wu, H. C. (1984).Eur. J. Biochem. 141, 331–337.Google Scholar
  36. Gilson, E., Alloing, G., Schmidt, T., Claverys, J. P., Dudler, R., and Hofnung, M. (1988).EMBO J. 7, 3971–3974.Google Scholar
  37. Hakkart, M. J. J., Veltkamp, E., and Nijikamp, H. J. J. (1981).Mol. Gen. Genet. 183, 318–325.Google Scholar
  38. Hansen, E. B., Pedersen, P. E., Schouls, L. M., Severin, E., and van Embden, J. D. A. (1985).J. Bacteriol. 162, 1127–1137.Google Scholar
  39. Hantke, K., and Braun, V. (1973).Eur. J. Biochem. 34, 284–296.Google Scholar
  40. Hayashi, S., and Wu, H. C. (1983).J. Bacteriol. 156, 773–777.Google Scholar
  41. Hayashi, S., and Wu, H. C. (1985).J. Bacteriol. 161, 949–954.Google Scholar
  42. Hayashi, S., and Wu, H. C. (1988). InPost-translational Modification of Proteins by Lipids, (Brodbeck, U., and Bordier, C. eds), Springer-Verlag, Berlin, pp. 88–93.Google Scholar
  43. Hayashi, S., Chang, S. Y., Chang, S., and Wu, H. C. (1984).J. Biol. Chem. 259, 10448–10454.Google Scholar
  44. Hayashi, S., Chang, S. Y., Chang, S., Giam, C. Z., and Wu, H. C. (1985).J. Biol. Chem. 260, 5753–5759.Google Scholar
  45. Hayashi, S., Chang, S. Y., Chang, S., and Wu, H. C. (1986).J. Bacteriol. 165, 678–681.Google Scholar
  46. Heacock, P. N., and Dowhan, W. (1989).J. Biol. Chem. 264, 14927–14977.Google Scholar
  47. Hirota, Y., Suzuki, H., Nishimura, Y., and Yasuda, S. (1977).Proc. Natl. Acad. Sci. USA 74, 1417–1420.Google Scholar
  48. Howard, S. P., Cavard, D., and Lazdunski, C. (1989).J. Bacteriol. 171, 410–418.Google Scholar
  49. Huang, J., Sukordhaman, M., and Schell, M. A. (1989).J. Bacteriol. 171, 3767–3774.Google Scholar
  50. Huang, Y. X., Ching, G., and Inouye, M. (1983).J. Biol. Chem. 258, 8139–8145.Google Scholar
  51. Hussain, M., Ichihara, S., and Mizushima, S. (1982).J. Biol. Chem. 257, 5177–5182.Google Scholar
  52. Hussain, M., Pastor, F. I. J., and Lampen, J. O. (1987).J. Bacteriol. 169, 579–586.Google Scholar
  53. Ichihara, S., Hussain, M., and Mizushima, S. (1981).J. Biol. Chem. 256, 3126–3129.Google Scholar
  54. Innis, M. A., Tokunaga, M., Williams, M. E., Loranger, J. M., Chang, S. Y., Chang, S., and Wu, H. C. (1984).Proc. Natl. Acad. Sci. USA 81, 3708–3712.Google Scholar
  55. Inouye, M., Shaw, I., and Shen, C. (1972).J. Biol. Chem. 247, 8154–8159.Google Scholar
  56. Inouye, S., Wang, S., Sekizawa, J., Halegoua, S., and Inouye, M. (1977).Proc. Natl. Acad. Sci. USA 74, 1004–1008.Google Scholar
  57. Inouye, S., Duffaud, G., and Inouye, M. (1986).J. Biol. Chem. 261, 10970–10975.Google Scholar
  58. Inukai, M., Takeuchi, M., Shimizu, K., and Arai, M. (1978).J. Antibiot. 31, 1203–1205.Google Scholar
  59. Isaki, L., Kawakami, M., Beers, R., Hom, K., and Wu, H. C. (1990).J. Bacteriol. 172, 469–472.Google Scholar
  60. Ito, K., Wittekind, M., Nomura, M., Shiba, K., Yua, T., Miura, A., and Nashimoto, H. (1983).Cell 32, 789–797.Google Scholar
  61. Jackowski, S., and Rock, C. O. (1986).J. Biol. Chem. 261, 11328–11333.Google Scholar
  62. Jung, J. U., Gutierrez, C., and Villarejo, M. R. (1989).J. Bacteriol. 171, 511–520.Google Scholar
  63. Katsuragi, N., Takizawa, N., and Murooka, Y. (1987).J. Bacteriol. 169, 2301–2306.Google Scholar
  64. Klein, P., Somorjai, R. L., and Lau, P. C. K. (1989).Protein Eng. 2, 15–20.Google Scholar
  65. Kumamoto, C. A., and Beckwith, J. (1983).J. Bacteriol. 154, 253–260.Google Scholar
  66. Lai, J. S., and Wu, H. C. (1980).J. Bacteriol. 144, 451–453.Google Scholar
  67. Lai, J. S., Philbrick, W. M., and Wu, H. C. (1980).J. Biol. Chem. 255, 5384–5387.Google Scholar
  68. Leduc, M., Joseleau-Petit, D., and Rothfield, L. I. (1989).FEMS Microbiol. Lett. 60, 11–14.Google Scholar
  69. Luirink, J., Watanabe, T., Wu, H. C., Stegehuis, F., de Graaf, F. K., and Oudega, B. (1987).J. Bacteriol. 169, 2245–2250.Google Scholar
  70. Luirink, J., Clark, D. M., Ras, J., Verschoor, E. T., Stegehuis, F., de Graaf, F. K., and Oudega, B. (1989).J. Bacteriol. 171, 2673–2679.Google Scholar
  71. Magee, A. I., and Schlesinger, M. J. (1982).Biochim. Biophys. Acta 694, 279–289.Google Scholar
  72. McLaughlin, J. R., Murray, C. L., and Rabinowitz, J. C. (1981).J. Biol. Chem. 256, 11283–11291.Google Scholar
  73. Millan, J. L. S., Boyd, D., Dalley, R., Wickner, W., and Beckwith, J. (1989).J. Bacteriol. 171, 5536–5541.Google Scholar
  74. Miller, K. W., Bouvier, J., Stragier, P., and Wu, H. C. (1987).J. Biol. Chem. 262, 7391–7397.Google Scholar
  75. Minkley, E., Jr. (1984).J. Bacteriol. 158, 464–473.Google Scholar
  76. Miyazaki, C., Kuroda, M., Ohta, A., and Shibuya, I. (1985).Proc. Natl. Acad. Sci. USA 82, 7530–7534.Google Scholar
  77. Müller, M., and Blobel, G. (1984).Proc. Natl. Acad. Sci. USA 81, 7737–7741.Google Scholar
  78. Nakamura, K., and Inouye, M. (1979).Cell 18, 1109–1117.Google Scholar
  79. Nakamura, K., and Inouye, M. (1980).Proc. Natl. Acad. Sci. USA 77, 1369–1373.Google Scholar
  80. Neugebauer, K., Sprengel, R., and Schaller, H. (1981).Nucleic Acids Res. 9, 2577–2588.Google Scholar
  81. Novak, P., and Dev, I. K. (1988).J. Bacteriol. 170, 5067–5075.Google Scholar
  82. Ogata, R. T., Winters, G., and Levine, R. P. (1982).J. Bacteriol. 151, 819–827.Google Scholar
  83. Oka, A., Nomura, N., Morita, M., Sugisaka, H., Sugimoto, K., and Takanami, M. (1979).Mol. Gen. Gent. 172, 151–159.Google Scholar
  84. Oliver, D. B., and Beckwith, J. (1981).Cell 25, 765–772.Google Scholar
  85. Oudega, B., Ykema, A., Stegehuis, F., and de Graaf, F. K. (1984).FEMS Microbiol. Lett. 22, 101–108.Google Scholar
  86. Palva, E. T. (1979).Eur. J. Biochem. 93, 495–503.Google Scholar
  87. Perlman, D., and Halvorson, H. O. (1983).J. Mol. Biol. 167, 391–409.Google Scholar
  88. Pollitt, S., and Inouye, M. (1986). InBacterial Outer Membranes as Model Systems. (Inouye, M., ed.), Wiley, New York, pp. 117–139.Google Scholar
  89. Pugsley, A. P., Chapon, C., and Schwartz, M. (1986).J. Bacteriol. 166, 1083–1088.Google Scholar
  90. Ray, T. K., and Cronan, J. E., Jr. (1976).Proc. Natl. Acad. Sci. USA 73, 4373–4378.Google Scholar
  91. Regue, M., Remenick, J., Tokunaga, M., Mackie, G. A., and Wu, H. C. (1984).J. Bacteriol. 156, 632–635.Google Scholar
  92. Rock, C. O., and Cronan, J. E., Jr. (1979).J. Biol. Chem. 254, 7116–7122.Google Scholar
  93. Sarvas, M., and Palva, I. A. (1983).J. Bacteriol. 155, 657–663.Google Scholar
  94. Schatz, P. J., Riggs, P. D., Jacq, A., Fath, M. J., and Beckwith, J. (1989).Genes Dev. 3, 1035–1044.Google Scholar
  95. Silver, P., and Wickner, W. (1983).J. Bacteriol. 154, 569–572.Google Scholar
  96. Soto-Gil, R. W., and Zyskind, J. W. (1989).J. Biol. Chem. 264, 14778–14783.Google Scholar
  97. Suzuki, H., Nishimura, Y., Yasuda, S., Nishimura, A., Yamada, M. and Hirota, Y. (1978).Mol. Gen. Genet. 167, 1–9.Google Scholar
  98. Suzuki, T., Itoh, A., Ichihara, S., and Mizushima, S. (1987).J. Bacteriol. 169, 2523–2528.Google Scholar
  99. Swancutt, M. A., Riley, B. S., Radolf, J. D., and Norgard, M. V. (1989).Infect. Immun. 57, 3314–3323.Google Scholar
  100. Takase, I., Ishino, F., Wachi, M., Kamata, H., Doi, M., Asoh, S., Matsuzawa, H., Ohta, T., and Matsuhashi, M. (1987).J. Bacteriol. 169, 5692–5699.Google Scholar
  101. Tian, G., Wu, H. C., Ray, P., and Tai, P. C. (1989).J. Bacteriol. 171, 1987–1997.Google Scholar
  102. Tokunaga, H., and Wu, H. C. (1984).J. Biol. Chem. 259, 6098–6104.Google Scholar
  103. Tokunaga, M., Tokunaga, H., and Wu, H. C. (1982).Proc. Natl. Acad. Sci. USA 79, 2255–2259.Google Scholar
  104. Tokunaga, M., Loranger, J. M., and Wu, H. C. (1983).J. Biol. Chem. 258, 12102–12105.Google Scholar
  105. Towler, D. A., Eubanks, S. R., Towery, D. S., Adams, S. P., and Glaser, L. (1987).J. Biol. Chem. 262, 1030–1036.Google Scholar
  106. von Heijne, G. (1983).Eur. J. Biochem. 133, 17–21.Google Scholar
  107. von Heijne, G. (1985).J. Mol. Biol. 184, 99–105.Google Scholar
  108. von Heijne, G. (1989).Protein Eng. 2, 531–534.Google Scholar
  109. Watanabe, T., Hayashi, S., and Wu, H. C. (1988).J. Bacteriol. 170, 4001–4007.Google Scholar
  110. Watson, R. J., Lau, P. C. K., Vernet, T., and Visentin, P. (1984).Gene 29, 175–184.Google Scholar
  111. Weyer, K. A., Schafer, W., Lottspeich, F., and Michel, H. (1987).Biochemistry 26, 2909–2914.Google Scholar
  112. Wolfe, P. B., Silver, P., and Wickner, W. (1982).J. Biol. Chem. 257, 7898–7902.Google Scholar
  113. Wolfe, P. B., Wickner, W., and Goodman, J. M. (1983).J. Biol. Chem. 288, 12073–12080.Google Scholar
  114. Wu, H. C. (1987). InBacterial Outer Membranes as Model Systems (Inouye, M., ed.), Wiley, New York, pp. 37–71.Google Scholar
  115. Yamagata, H., Nakamura, K., and Inouye, M. (1981).J. Biol. Chem. 256, 2194–2198.Google Scholar
  116. Yamagata, H., Taguchi, N., Daishima, K., and Mizushima, S. (1983).Mol. Gen. Genet. 192, 10–14.Google Scholar
  117. Yamaguchi, K., and Inouye, M. (1988).J. Bacteriol. 170, 3747–3749.Google Scholar
  118. Yamaguchi, K., Yu, F., and Inouye, M. (1988).Cell 53, 423–432.Google Scholar
  119. Yu, F., Yamada, H., Daishima, K., and Mizushima, S. (1984).FEBS Lett. 173, 264–268.Google Scholar
  120. Yu, F., Inouye, S., and Inouye, M. (1986).J. Biol. Chem. 261, 2284–2288.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Shigeru Hayashi
    • 1
  • Henry C. Wu
    • 1
  1. 1.Department of MicrobiologyUniformed Services University of the Health SciencesBethesda

Personalised recommendations