Journal of Bioenergetics and Biomembranes

, Volume 26, Issue 3, pp 317–325 | Cite as

Microcompartmentation of energy metabolism at the outer mitochondrial membrane: Role in diabetes mellitus and other diseases

  • Edward R. B. McCabe
Article

Abstract

Complexes made up of the kinases, hexokinase and glycerol kinase, together with the outer mitochondrial membrane voltage-dependent anion channel (VDAC) protein, porin, and the inner mitochondrial membrane protein, the adenine nucleotide translocator, are involved in tumorigenesis, diabetes mellitus, and central nervous system function. Identification of these two mitochondrial membrane proteins, along with an 18 kD protein, as components of the peripheral benzodiazepine receptor, provides independent confirmation of the interaction of porin and the adenine nucleotide translocator to form functional contact sites between the inner and outer mitochondrial membranes. We suggest that these are dynamic structures, with channel conductances altered by the presence of ATP, and that ligand-mediated conformational changes in the porin-adenine nucleotide translocator complexes may be a general mechanism in signal transduction.

Key words

Benzodiazepine receptor, peripheral, porin (VDAC) component of cancer, role of hexokinase and porin (VDAC) in diabetes mellitus, role of glucokinase in glucokinase, role in diabetes mellitus glycerol kinase, porin (VDAC) binding of hexokinase, porin (VDAC) binding of ischemia, cerebral, effect on hexokinase binding porin, mammalian, the voltage-dependent anion channel (VDAC) tumorigenesis, role of hexokinase and porin (VDAC) in voltage-dependent anion channel (VDAC), mammalian porin 

References

  1. Adams, V., and McCabe, E. R. B. (1994). InProceedings of NATO ARW, Molecular Biology of Mitochondrial Transport Systems (Colombini, M., and Fore, M., eds.), Springer-Verlag, Berlin, in press.Google Scholar
  2. Adams, V., Griffin, L., Towbin, J., Gelb, B., Worley, K., and McCabe, E. R. B. (1991a).Biochem. Med. Metab. Biol. 45 271–291.Google Scholar
  3. Adams, V., Griffin, L. D., Gelb, B. D., and McCabe, E. R. B. (1991b).Biochem. Biophys. Res. Commun. 177 1101–1106.Google Scholar
  4. Andreone, T., Printz, R. L., Pilkis, S. J., Magnuson, M. A., and Granner, D. K. (1989).J. Biol. Chem. 264 363–369.Google Scholar
  5. Arora, K. K., and Pedersen, P. L. (1988).J. Biol. Chem. 263 17422–17428.Google Scholar
  6. Arora, K. K., and Pedersen, P. L. (1993).Arch. Biochem. Biophys. 304 515–518.Google Scholar
  7. Ballinger, S. W., Shoffner, J. M., Hedaya, E. V., Trounce, I., Polak, M. A., Koontz, D. A., and Wallace, D. C. (1992).Nature Genet. 1 11–15.Google Scholar
  8. Barinaga, M. (1990).Science 250 506–507.Google Scholar
  9. Bessman, S. P. (1972).Isr. J. Med. Sci. 8 344–351.Google Scholar
  10. Bessman, S. P., Borrebaek, B., Geiger, P. J., and Ben-Or, S. (1978). InMicroenvironments and Metabolic Compartmentation (Srere, P. A., and Estabrook, R. W., eds.), Academic Press, New York, pp. 111–128.Google Scholar
  11. Blachly-Dyson, E., Zambronicz, E. B., Yu, W. H., Adams, V., McCabe, E. R. B., Adelman, J., Colombini, M., and Forte, M. (1993).J. Biol. Chem. 268 1835–1841.Google Scholar
  12. Blachly-Dyson, E., Baldini, A., Litt, M., McCabe, E. R. B., and Forte, M. (1994).Genomics, in press.Google Scholar
  13. Borrebaek, B., and Spydevold, O. (1969).Diabetologia 5 42–43.Google Scholar
  14. Brdiczka, D., and Wicker, U. (1994). InProceedings of NATO ARW, Molecular Biology of Mitochondrial Transport Systems (Colombini, M., and Forte, M., eds.), Springer-Verlag, Berlin, in press.Google Scholar
  15. Bu, X., and Rotter, J. I. (1993).Lancet 342 598–600.Google Scholar
  16. Bustamante, E., Morris, H. P., and Pedersen, P. L. (1981).J. Biol. Chem. 256 8699–8704.Google Scholar
  17. Denis-Pouxviel, C., Riesinger, I., Buehler, C., Brdiczka, D., and Murat, J. C. (1987).Biochim. Biophys. Acta 902 335–348.Google Scholar
  18. Epstein, P., Boschero, A., Atwater, I., Cai, X., and Overbeek, P. (1993).Proc. Natl. Acad. Sci. USA 89 12038–12042.Google Scholar
  19. Fieck, C., Benz, R., Roos, N., and Brdiczka, D. (1982).Biochim. Biophys. Acta 688 429–440.Google Scholar
  20. Froguel, P., Vaxillaire, M., Sun, F., Velho, G., Zouali, H., Butel, M. O., Lesage, S., Vionnet, N., Clément, K., Fougerousse, F., Tanizawa, Y., Weissenbach, J., Beckmann, J. S., Lathrop, G. M., Pass, P., Permutt, M. A., and Cohen, D. (1992).Nature (London) 356 162–164.Google Scholar
  21. Froguel, P., Zouali, H., Vionnet, N., Velho, G., Vaxillaire, M., Sun, F., Lesage, S., Stoffel, M., Takeda, J., Passa, P., Permutt, A., Beckmann, J., Bell, G., and Cohen, D. (1993).N. Engl. J. Med. 328 697–702.Google Scholar
  22. Gelb, B. D., Adams, V., Jones, S. N., Griffin, L. D., MacGregor, G. R., and McCabe, E. R. B. (1992).Proc. Natl. Acad. Sci. USA 89 202–206.Google Scholar
  23. Gellerich, F. N., Wagner, M., Kapischke, M., Wicker, U., and Bridiczka, D. (1993).Biochim. Biophys. Acta 1142 217–227.Google Scholar
  24. Gerbitz, K. D., Paprotta, A., Jaksch, M., Zierz, S., and Drechsel, J. (1993).FEBS Lett. 321 194–196.Google Scholar
  25. Gidh-Jain, M., Takeda, J., Xu, L. Z., Lange, A. J., Vionnet, N., Stoffel, M., Froguel, P., Velho, G., Sun, F., Cohen, D., Patel, P., Lo, Y.-M. D., Hattersley, A. T., Luthman, H., Wedell, A., St. Charles, R., Harrison, R. W., Weber, I. T., Bell, G. I., and Pilkis, S. J. (1993).Proc. Natl. Acad. Sci. USA 90 1932–1936.Google Scholar
  26. Golshani, S. (1992).Biochem. Med. Metab. Biol. 47 108–115.Google Scholar
  27. Gots, R. E., and Bessman, S. P. (1974).Arch. Biochem. Biophys. 163 7–14.Google Scholar
  28. Gots, R. E., Gorin, F. A., and Bessman, S. P. (1972).Biochem. Biophys. Res. Commun. 49 1249–1255.Google Scholar
  29. Griffin, L. D., Gelb, B. D., Wheeler, D. A., Davison, D., Adams, V., and McCabe, E. R. B. (1991).Genomics 11 1014–1024.Google Scholar
  30. Guo, W., Worley, K., Adams, V., Mason, J., Sylvester-Jackson, D., Zhang, Y.-H., Towbin, J. A., Fogt, D. D., Madu, S., Wheeler, D. A., and McCabe, E. R. B. (1993).Nature Genet. 4 367–372.Google Scholar
  31. Ha, H., Hajek, P., Bedwell, D., and Burrows, P. (1993).J. Biol. Chem. 268 12143–12149.Google Scholar
  32. Hackenbrock, C. R. (1968).Proc. Natl. Acad. Sci. USA 61 598–605.Google Scholar
  33. Hattersley, A. T., Turner, R. C., Permutt, M. A., Patel, P., Tanizawa, Y., Chiu, K. C., O'Rahilly, S., Watkins, P. J., and Wainscoat, J. S. (1992).Lancet 339 1307–1310.Google Scholar
  34. Hirsch, J. D., Beyer, C. F., Malkowitz, L., Beer, B., and Blume, A. J. (1989).Mol. Pharmacol. 35 157–163.Google Scholar
  35. Hoshi, T., Zagotta, W. N., and Aldrich, R. W. (1990).Science 250 533–538.Google Scholar
  36. Hurley, J. H., Faber, H. R., Worthylake, D., Meadow, N. D., Roseman, S., Pettigrew, D. W., and Remington, S. J. (1993).Science 259 673–677.Google Scholar
  37. Inui, M., and Ishibashi, S. (1979).J. Biochem. 85 1151–1156.Google Scholar
  38. Jan, L. Y., and Jan, Y. N. (1989).Cell 56 13–25.Google Scholar
  39. Katzen, H. M. (1967).Adv. Enzyme Regul. 5 335–356.Google Scholar
  40. Katzen, H. M., and Schimke, R. T. (1965).Proc. Natl. Acad. Sci. USA 54 1218–1225.Google Scholar
  41. Kayser, H., Kratzin, H. D., Thinnes, F. P., Göetz, H., Schmidt, W. E., Eckart, K., and Hilschmann, N. (1989).Biol. Chem. Hoppe-Seyler 370 1265–1278.Google Scholar
  42. Kerem, B., Rommens, J. M., Buchanan, J. A., Markiewicz, D., Cox, T. K., Chakravarti, A., Buchwald, M., and Tsui, L.-C. (1989).Science 245 1073–1080.Google Scholar
  43. Koranyi, L. I., Tanizawa, Y., Welling, C. M., Rabin, D. U., and Permutt, M. A. (1992).Diabetes 41 807–811.Google Scholar
  44. Lin, D., Chang, Y. J., Strauss, J. F., III, and Miller, W. L. (1993).Genomics 18 643–650.Google Scholar
  45. Lindberg, R. A., Quinn, A. M., and Hunter, T. (1992).Trends Biochem. Sci. 17 114–119.Google Scholar
  46. Linden, M., Gellerfors, P., and Nelson, B. D. (1982).FEBS Lett. 141 189–192.Google Scholar
  47. Linden, M., Andersson, G., Gellerfors, P., and Nelson, D. B. (1984).Biochim. Biophys. Acta 770 93–96.Google Scholar
  48. Magnuson, M. A., Andreone, T. L., Printz, R. L., Koch, S., and Granner, D. K. (1989).Proc. Natl. Acad. Sci. USA 86 4838–4842.Google Scholar
  49. Majander, A., Suomalainen, A., Vettenranta, K., Sariola, H., Perkkio, M., Holmberg, C., and Pihko, H. (1991).Pediatr. Res. 30 327–330.Google Scholar
  50. Malaisse-Lagae, F., and Malaisse, W. J. (1988).Biochem. Med. Metab. Biol. 39 80–89.Google Scholar
  51. Matschinsky, F. M. (1990).Diabetes 39 647–652.Google Scholar
  52. McCabe, E. R. B. (1983).Biochem. Med. 30 215–230.Google Scholar
  53. McCabe, E. R. B., and Seltzer, W. K. (1986). InMyocardial and Skeletal Muscle Bioenergetics: Proceedings of 2nd International Congress on Myocardial and Cellular Bioenergetics and Compartmentation (Brautbar, N., ed.), Plenum Press, New York, pp. 481–494.Google Scholar
  54. McCabe, E. R. B. (1994). InThe Metabolic Basis of Inherited Disease (Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D., eds.), McGraw-Hill, New York, in press.Google Scholar
  55. McEnery, M. W., Snowman, A. M., Trifiletti, R. R., and Snyder, S. H. (1992).Proc. Natl. Acad. Sci. USA 89 3170–3174.Google Scholar
  56. Miwa, I., Mitsuyama, S., Toyoda, Y., Nonogakii, T., Aoki, S., and Okuda, J. (1990).Biochem. Int. 22 759–767.Google Scholar
  57. Moreno-Sanchez, R., Hogue, B. A., Bravo, C., Newman, A. H., Basile, A. S., and Chiang, P. K. (1991).Biochem. Pharmacol. 41 1479–1484.Google Scholar
  58. Nelson, B. D., and Kabir, F. (1986).Biochemie 68 407–415.Google Scholar
  59. Nishi, S., Seino, S., and Bell, G. I. (1988).Biochem. Biophys. Res. Commun. 157 937–943.Google Scholar
  60. Oka, Y., Katagiri, H., Yazaki, Y., Murase, T., and Kobayashi, T. (1993).Lancet 342 527–528.Google Scholar
  61. Onisihi, H., Inoue, K., Osaka, H., Kimura, S., Nagatomo, H., Hanihara, T., Kawamoto, S., Okuda, K., Yamada, Y., and Kosaka, K. (1993).J. Neurol. Sci. 114 205–208.Google Scholar
  62. Ostlund, A. K., Gohring, U., Krause, J., and Brdiczka, D. (1983).Biochem. Med. 30 231–245.Google Scholar
  63. Papadopoulos, V. (1993).Endocrinol. Rev. 14 222–240.Google Scholar
  64. Parry, D. M., and Pedersen, P. L. (1983).J. Biol. Chem. 258 10904–10912.Google Scholar
  65. Piccolo, G., Aschei, M., Ricordi, A., Banfi, P., Lo Curto, F., and Fratino, P. (1989).J. Neurol. Sci. 94 163–172.Google Scholar
  66. Polakis, P. G., and Wilson, J. E. (1985).Arch. Biochem. Biophys. 236 328–337.Google Scholar
  67. Quade, A., Zierz, S., and Klingmuller, D. (1992).Clin. Invest. 70 396–402.Google Scholar
  68. Reardon, W., Ross, R. J., Sweeney, M. G., Luxon, L. M., Pembrey, M. E., Harding, A. E., and Trembath, R. C. (1992).Lancet 340 1376–1379.Google Scholar
  69. Remes, A. M., Majama, K., Herva, R., and Hassinen, I. E. (1993).Neurology 43 1015–1020.Google Scholar
  70. Roos, N., Benz, R., and Brdiczka, D. (1982).Biochim. Biophys. Acta 685 202–214.Google Scholar
  71. Rotig, A., Cormier, V., Chatelain, P., Francois, R., Saudubray, J. M., Rustin, P., and Munnich, A. (1993).J. Clin. Invest. 91 1095–1098.Google Scholar
  72. Sadava, D., Depper, M., Gilbert, M., Bernard, B., and McCabe, E. R. B. (1987).Biol. Neonate 52 26–32.Google Scholar
  73. Sargent, C. A., Affara, N. A., Bentley, E., Pelmear, A., Bailey, D. M. D., Davey, P., Dow, D., Leversha, M., Aplin, H., Besley, G. T. N., and Ferguson-Smith, M. A. (1993).Hum. Mol. Genet. 2 97–106.Google Scholar
  74. Stoffel, M., Bell, K., Blackburn, C., Powell, K., Seo, T., Takeda, J., Vionnet, N., Xiang, K.-S., Gidh-Jain, M., Pilkis, S., Ober, C. and Bell, G. (1993).Diabetes 42 937–940.Google Scholar
  75. Superti-Furga, A., Schoenle, E., Tuchschmid, P., Caduff, R., Sabato, V., DeMattia, D., Gitzelmann, R. and Steinmann, B. (1993).Eur. J. Pediatr. 152 44–50.Google Scholar
  76. Thinnes, F. P., Goetz, H., Kayser, H., Benz, R., R., Schmidt, W. E., Kratzin, H. D. and Hilschmann, N. (1989)Biol. Chem. Hoppe-Seyler 370 1253–1264.Google Scholar
  77. van den Ouweland, L. M., Lemkes, H. H., Ruitenbeek, W., Sandkuijl, L. A., de Viklder, M. F., Struyvenberg, P. A., van de Kamp, J. J. and Maassen, J. A. (1992).Nature Genet. 1 368–371.Google Scholar
  78. Velho, G., Froguel, P., Clement, K., Pueyo, M., Rakotoambinina, B., Zouali, H., Passa, P., Cohen, D. and Robert, J.-J. (1992).Lancet 340 444–448.Google Scholar
  79. Vionnet, N., Stoffel, M., Takeda, J., Yasuda, K., Bell, G. I., Zouali, H., Lesage, S., Velho, G., Iris, F., Pass, P., Froguel, P. and Cohen, D. (1992).Nature 356 721–722.Google Scholar
  80. Walker, A. P., Muscatelli, F. and Monaco, A. P. (1993).Hum. Mol. Genet. 2 107–114.Google Scholar
  81. Walters, E. and McClean, P. (1968).Biochem. J. 109 737–741.Google Scholar
  82. Wilson, J. E. (1978).Trends Biochem. Sci. 3 124–125.Google Scholar
  83. Wilson, J. E. (1980).Curr. Top. Cell. Regul. 16 1–54.Google Scholar
  84. Wilson, J. E. (1985). InRegulation of Carbohydrate Metabolism, Vol. I (Beitner, R., ed.), CRC Press, Cleveland, Ohio, pp. 45–85.Google Scholar
  85. Zagotta, W. N., Hoshi, T., and Aldrich, R. W. (1990).Science 250 568–571.Google Scholar
  86. Zupanc, M. L., Moraes, C. T., Shanske, S., Langman, C. B., Ciafaloni, E., and DiMauro, S. (1991).Ann. Neurol. 29 680–683.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Edward R. B. McCabe
    • 1
    • 2
  1. 1.Department of PediatricsBaylor College of MedicineHouston
  2. 2.Department of Molecular and Human GeneticsBaylor College of MedicineHouston

Personalised recommendations