Journal of Bioenergetics and Biomembranes

, Volume 26, Issue 2, pp 179–191

Developmental regulation of mitochondrial biogenesis inTrypanosoma brucei

  • Jeffrey W. Priest
  • Stephen L. Hajduk
Article

Abstract

The metabolism ofTrypanosoma brucei undergoes a significant change as the parasite differentiates from the mammalian bloodstream form to the form found in the tse-tse fly vector. Because the mitochondria of bloodstream form cells lack cytochromes and several key citric acid cycle enzymes, the metabolism of these cells is mostly limited to glycolysis. The reducing equivalents generated by this process are passed to oxygen by a plantlike alternative oxidase. As cells differentiate to the insect form, they begin to oxidatively metabolize proline. The mitochondria of insect form cells contain functional, cytochromemediated electron transport chains and have complete complements of citric acid cycle enzymes. Although the characterization is far from complete, the nuclear and mitochondrial genes involved in the expression of these mitochondrial functions appear to be developmentally regulated at posttranscriptional and posttranslational levels. This review outlines some of the molecular processes that are associated with the developmental regulation of mitochondrial biogenesis and suggests some possible mechanisms of regulation.

Key words

Kinetoplastid organelle cytochrome assembly 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, B. K., and Hajduk, S. L. (1994).Curr. Opin. Cell Biol., in press.Google Scholar
  2. Adler, B. K., Harris, M. E., Bertrand, K. I., and Hajduk, S. L. (1991).Mol. Cell. Biol. 11 5878–5884.Google Scholar
  3. ASM News (1990).ASM News 56 358.Google Scholar
  4. Bass, K. E., and Wang, C. C. (1991).Mol. Biochem. Parasitol. 44 261–270.Google Scholar
  5. Bass, K. E., and Wang, C. C. (1992).Mol. Biochem. Parasitol. 56 129–140.Google Scholar
  6. Ben Amar, M. F., Pays, A., Tebabi, P., Dero, B., Seebeck, T., Steinert, M., and Pays, E. (1988).Mol. Cell. Biol. 8 2166–2176.Google Scholar
  7. Benne, R., Van Den Burg, J., Brakenhoff, J. P. H., Sloof, P., Van Boom, J. H., and Tromp, M. C. (1986).Cell 46 819–826.Google Scholar
  8. Bhat, G. J., Koslowsky, D. J., Feagin, J. E., Smiley, B. L., and Stuart, K. (1990).Cell. 61 2100–2107.Google Scholar
  9. Bhat, G. J., Souza, A. E., Feagin, J. E., and Stuart, K. (1992).Mol. Biochem. Parasitol. 52 231–240.Google Scholar
  10. Bienen, E. J., Hammadi, E., and Hill, G. C. (1981).Exp. Parasitol. 51 408–417.Google Scholar
  11. Bienen, E. J., Hill, G. C., and Shin, K. (1993).Mol. Biochem. Parasitol. 7 75–86.Google Scholar
  12. Bienen, E. J., Saric, M., Pollakis, G., Grady, R. W., and Clarkson, A. B., Jr. (1991).Mol. Biochem. Parasitol. 45 185–192.Google Scholar
  13. Borst, P. (1991).Trends Genet. 7 139–141.Google Scholar
  14. Bowman, I. B. R., Srivastava, H. K., and Flyn, I. W. (1972). InComparative Biochemistry of Parasites (Van den Bossche, H., ed.), Academic Press, New York, pp. 329–342.Google Scholar
  15. Brown, R. C., Evans, D. A., and Vickerman, K. (1973).Int. J. Parasitol. 3 691–704.Google Scholar
  16. Cedergren, R., Gray, M. W., Abel, Y., and Sankoff, D. (1988).J. Mol. Evol. 28 98–112.Google Scholar
  17. Chang, K. P., Chang, C. S., and Sassa, S. (1975).Proc. Natl. Acad. Sci. USA 72 2979–2983.Google Scholar
  18. Clarkson, A. B., Jr., Grady, R. W., Grossman, S. A., McCallum, R. J., and Brohn, F. H. (1981).Mol. Biochem. Parasitol. 3 271–291.Google Scholar
  19. Clarkson, A. B., Jr., Bienen, E. J., Pollakis, G., and Grady, R. W. (1989).J. Biol. Chem. 264 17770–17776.Google Scholar
  20. Clayton, D. A. (1991).Annu. Rev. Cell Biol. 7 453–478.Google Scholar
  21. Cornelissen, A. W. C. A., Verspieren, M. P., Toulme, J. J., Swinkels, B. W., and Borst, P. (1986).Nucleic Acids Res. 14 5605–5614.Google Scholar
  22. Cunningham, I. (1977).J. Protozool. 24 325–329.Google Scholar
  23. Czichos, J., Nonnengaesser, C., and Overath, P. (1986).Exp. Parasitol. 62 283–291.Google Scholar
  24. Evans, D. A., and Brown, R. C. (1972).J. Protozool. 19 686–690.Google Scholar
  25. Evans, D. A., and Brown, R. C. (1973).J. Protozool. 20 157–160.Google Scholar
  26. Fairlamb, A. H., and Bowman, I. B. R. (1977).Int. J. Biochem. 8 669–675.Google Scholar
  27. Fairlamb, A. H., and Opperdoes, F. R. (1986). InCarbohydrate Metabolism in Cultured Cells (Morgan, M. J., ed.), Plenum Press, New York, pp. 183–224.Google Scholar
  28. Feagin, J. E., and Stuart, K. (1988).Mol. Cell. Biol. 8 1259–1265.Google Scholar
  29. Feagin, J. E., Jasmer, D. P., and Stuart, K. (1987).Cell 49 337–345.Google Scholar
  30. Feagin, J. E., Abraham, J. M., and Stuart, K. (1988a).Cell 53 413–422.Google Scholar
  31. Feagin, J. E., Shaw, J. M., Simpson, L., and Stuart, K. (1988b).Proc. Natl. Acad. Sci. USA 85 539–543.Google Scholar
  32. Flynn, I. W., and Bowman, I. B. R. (1973).Comp. Biochem. Physiol. 45B 25–42.Google Scholar
  33. Forsburg, S. L., and Guarente, L. (1989).Annu. Rev. Cell Biol. 5 153–180.Google Scholar
  34. Gibson, W. C., Swinkels, B. W., and Borst, P. (1988).J. Mol. Biol. 201 315–325.Google Scholar
  35. Glass, D. J., Polvere, R. I., and Van der Ploeg, L. H. T. (1986).Mol. Cell. Biol. 6 4657–4666.Google Scholar
  36. Glick, B., and Schatz, G. (1991).Annu. Rev. Genet. 25 21–44.Google Scholar
  37. Grant, P. T., and Sargent, J. R. (1960).Biochem. J. 76 229–237.Google Scholar
  38. Gray, M. W. (1989).Annu. Rev. Cell Biol. 5 25–50.Google Scholar
  39. Gray, M. W., and Doolittle, W. F. (1982).Microbiol. Rev. 46 1–42.Google Scholar
  40. Guarente, L., and Mason, T. (1983).Cell 32 1279–1286.Google Scholar
  41. Hajduk, S. L., Harris, M. E., and Pollard, V. (1993).FASEB J. 7 54–63.Google Scholar
  42. Hancock, K., and Hajduk, S. L. (1990).J. Biol. Chem. 265 19208–19215.Google Scholar
  43. Hancock, K., LeBlanc, A., Donze, D., and Hajduk, S. L. (1992).J. Biol. Chem. 267 23963–23971.Google Scholar
  44. Hartl, F. U., Pfanner, N., Nicholson, D. W., and Neupert, W. (1989).Biochim. Biophys. Acta 988 1–45.Google Scholar
  45. Hill, G. C. (1976).Biochim. Biophys. Acta 456 149–193.Google Scholar
  46. Huang, J., and Van der Ploeg, L. H. T. (1991).Mol. Cell. Biol. 11 3180–3190.Google Scholar
  47. Jasmer, D. P., and Stuart, K. (1986).Mol. Biochem. Parasitol. 18 321–331.Google Scholar
  48. John, P. (1987).Ann. N.Y. Acad. Sci. 503 140–150.Google Scholar
  49. Johnson, P. J., Kooter, J. M., and Borst, P. (1987).Cell 51 273–281.Google Scholar
  50. Kagawa, Y., and Ohta, S. (1990).Int. J. Biochem. 22 219–229.Google Scholar
  51. Kooter, J. M., DeLange, T., and Borst, P. (1984).EMBO J. 3 2387–2392.Google Scholar
  52. Koslowsky, D. J., Bhat, G. H., Perrollaz, A. L., Feagin, J. E., and Stuart, K. (1990).Cell 62 901–911.Google Scholar
  53. Koslowsky, D. J., Riley, G. R., Feagin, J. E., and Stuart, K. (1992).Mol. Cell. Biol. 12 2043–2049.Google Scholar
  54. Marchand, M., Poliszczak, A., Gibson, W. C., Wierenga, R. K., Opperdoes, F. R., and Michels, P. A. M. (1988).Mol. Cell. Biol. 8 3837–3846.Google Scholar
  55. Margulis, L. (1981).Symbiosis in Cell Evolution Freeman, San Francisco.Google Scholar
  56. Meshnick, S. R., Chang, K. P., Cerami, A. (1977).Biochem. Pharmacol. 26 1923–1928.Google Scholar
  57. Michelotti, E. F., and Hajduk, S. L. (1987).J. Biol. Chem. 262 927–932.Google Scholar
  58. Michelotti, E. F., Harris, M. E., Adler, B. K., Torri, A. F., and Hajduk, S. L. (1993).Mol. Biochem. Parasitol. 54 31–42.Google Scholar
  59. Mottram, J. C., Bell, S. D., Nelson, R. G., and Barry, J. D. (1991).J. Biol. Chem. 266 18313–18317.Google Scholar
  60. Muhich, M. L., and Boothroyd, J. C. (1988).Mol. Cell. Biol. 8 3837–3846.Google Scholar
  61. Munroe, D., and Jacobson, A. (1990).Gene 91 151–158.Google Scholar
  62. Myler, P. J., Glick, D., Feagin, J. E., Morales, T. H., and Stuart, K. (1993).Nucleic Acids Res. 21 687–694.Google Scholar
  63. Nargang, F. E., Drygas, M. E., Kwong, P. L., Nicholson, D. W., and Neupert, W. (1988).J. Biol. Chem. 263 9388–9394.Google Scholar
  64. Nicholson, D. W., and Neupert, W. (1989).Proc. Natl. Acad. Sci. USA 86 4340–4344.Google Scholar
  65. Nicholson, D. W., Stuart, R. A., and Neupert, W. (1989).J. Biol. Chem. 264 10156–10168.Google Scholar
  66. Ohashi, A., Gibson, J., Gregor, I., and Schatz, G. (1982).J. Biol. Chem. 257 13042–13047.Google Scholar
  67. Opperdoes, F. R. (1987).Ann. Rev. Microbiol. 41 128–151.Google Scholar
  68. Opperdoes, F. R., Borst, P., Bakker, S., and Leene, W. (1977).Eur. J. Biochem. 76 29–39.Google Scholar
  69. Overath, P., Czichos, J., and Haas, C. (1986).Eur. J. Biochem. 160 175–182.Google Scholar
  70. Pays, E., Coquelet, H., Tebabi, P., Pays, A., Jeffries, D., Steinert, M., Koenig, E., Williams, R. O., and Roditi, I. (1990).EMBO J. 9 3145–3151.Google Scholar
  71. Perry, K. L., Watkins, K. P., and Agabian, N. (1987).Proc. Natl. Acad. Sci. USA 84 8190–8194.Google Scholar
  72. Peterson, G. C., Souza, A. E., and Parsons, M. (1993).Mol. Biochem. Parasitol. 58 63–70.Google Scholar
  73. Pollard, V. W., and Hajduk, S. L. (1991).Mol. Cell. Biol. 11 1668–1675.Google Scholar
  74. Pollard, V. W., Rohrer, S. P., Michelotti, E. F., Hancock, K., and Hajduk, S. L., (1990).Cell 63 783–790.Google Scholar
  75. Pollard, V. W., Sabatini, R., and Hajduk, S. L. (1993).Methods Mol. Genet., in press.Google Scholar
  76. Priest, J. W., and Hajduk, S. L. (1992).J. Biol. Chem. 267 20188–20195.Google Scholar
  77. Priest, J. W., Wood, Z. A., and Hajduk, S. L. (1993).Biochim. Biophys. Acta 1144 229–231.Google Scholar
  78. Read, L. K., Myler, P. J., and Stuart, K. (1992).J. Biol. Chem. 267 1123–1128.Google Scholar
  79. Ryley, J. F. (1956).Biochem. J. 62 215–224.Google Scholar
  80. Ryley, J. F. (1962).Biochem. J. 85 211–223.Google Scholar
  81. Schneider, J. C., and Guarente, L. (1991).Mol. Cell. Biol. 11 4934–4942.Google Scholar
  82. Sen, K., and Beattie, D. S. (1985).Arch. Biochem. Biophys. 242 393–401.Google Scholar
  83. Sen, K., and Beattie, D. S. (1986).Arch. Biochem. Biophys. 251 239–249.Google Scholar
  84. Sidhu, A., and Beattie, D. S. (1983).J. Biol. Chem. 258 10649–10656.Google Scholar
  85. Simpson, L. (1987).Annu. Rev. Microbiol. 41 363–382.Google Scholar
  86. Souza, A. E., Myler, P. J., and Stuart, K. (1992).Mol. Cell Biol. 12 2100–2107.Google Scholar
  87. Stuart, K. (1991a).Annu. Rev. Microbiol. 45 327–344.Google Scholar
  88. Stuart, K. (1991b).Trends Biochem. Sci. 16 68–72.Google Scholar
  89. Sturm, N. R., and Simpson, L. (1990).Cell 61 879–884.Google Scholar
  90. TDR News (1990).TDR News 34 1–2.Google Scholar
  91. Thomashow, L. S., Milhausen, M., Rutter, W. J., and Agabian, N. (1983).Cell 32 35–43.Google Scholar
  92. Torri, A. F., and Hajduk, S. L. (1988).Mol. Cell. Biol. 8 4625–4633.Google Scholar
  93. Torri, A. F., Bertrand, K. I., and Hajduk, S. L. (1993).Mol. Biochem. Parasitol. 57 305–316.Google Scholar
  94. Tschudi, C., Young, A. S., Ruben, L., Patton, C. L., and Richards, F. F. (1985).Proc. natl. Acad. Sci. USA 82 3998–4002.Google Scholar
  95. Turrens, J. F. (1991). InBiochemical Protozoology (Coombs, G. H., and North, M. J., eds.), Taylor and Francis, Washington, DC, pp. 145–153.Google Scholar
  96. Tzagoloff, A., and Myers, A. M. (1986).Annu. Rev. Biochem. 55 249–285.Google Scholar
  97. Ullu, E., Matthews, K. R., and Tschudi, C. (1993).Mol. Cell. Biol. 13 720–725.Google Scholar
  98. van Loon, A. P. G. M., Brandli, A. W., Pesold-Hurt, B., Blank, D., and Schatz, G. (1987).EMBO J. 6 2433–2439.Google Scholar
  99. Vickerman, K. (1965).Nature (London) 208 762–766.Google Scholar
  100. Vickerman, K. (1985).Br. Med. Bull 41 105–114.Google Scholar
  101. Vijayasarathy, S., Ernest, I., Itzhaki, J. E., Sherman, D., Mowatt, M. R., Michels, P. A. M., and Clayton, C. E. (1990).Nucleic Acids Res. 18 2967–2975.Google Scholar
  102. Walder, J. A., Eder, P. S., Engman, D. M., Brentano, S. T., Walder, R. Y., Knutzon, D. S., Dorfman, D. M., and Donelson, J. E. (1986).Science 233 569–571.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Jeffrey W. Priest
    • 1
  • Stephen L. Hajduk
    • 1
    • 2
  1. 1.Department of Biochemistry and Molecular Genetics, Schools of Medicine and DentistryUniversity of Alabama at BirminghamBirmingham
  2. 2.Department of Medicine, Schools of Medicine and DentistryUniversity of Alabama at BirminghamBirmingham

Personalised recommendations