Journal of Bioenergetics and Biomembranes

, Volume 22, Issue 4, pp 571–592 | Cite as

Binding protein-dependent transport systems

  • C. F. Higgins
  • S. C. Hyde
  • M. M. Mimmack
  • U. Gileadi
  • D. R. Gill
  • M. P. Gallagher
Mini-Review

Abstract

Bacterial binding protein-dependent transport systems are the best characterized members of a superfamily of transporters which are structurally, functionally, and evolutionary related to each other. These transporters are not only found in bacteria but also in yeasts, plants, and animals including man, and include both import and export systems. Although any single system is relatively specific, different systems handle very different substrates which can be inorganic ions, amino acids, sugars, large polysaccharides, or even proteins. Some are of considerable medical importance, including Mdr, the protein responsible for multidrug resistance in human tumors, and the product of the cystic fibrosis locus. In this article we review the current state of knowledge on the structure and function of the protein components of these transporters, the mechanism by which transport is mediated, and the role of ATP in the transport process.

Key Words

ATP periplasm binding protein cystic fibrosis multidrug resistance P-glycoprotein import export transport membrane protein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, M. D., and Oxender, D. L. (1989).J. Biol. Chem. 264, 15739–15742.Google Scholar
  2. Albright, L. M., Ronson, C. W., Nixon, B. T., and Ausubel, F. M. (1989).J. Bacteriol 171, 1932–1941.Google Scholar
  3. Alloing, G., Trombe, M-C., and Claverys, J-P. (1990).Mol. Microbiol. 4, 633–644.Google Scholar
  4. Ames, G. F-L. (1985).Curr. Top. Membr. Transport 23, 103–119.Google Scholar
  5. Ames, G. F-L. (1986).Ann. Rev. Biochem. 55, 397–425.Google Scholar
  6. Ames, G. F-L. (1987).Cell 47, 323–324.Google Scholar
  7. Ames, G. F-L., and Nikaido, K. (1981).Eur. J. Biochem. 115, 525–531.Google Scholar
  8. Ames, G. F-L., and Spudich, E. N. (1976).Proc. Natl. Acad. Sci. USA 73, 1877–1881.Google Scholar
  9. Ames, G. F-L., Nikaido, K., Groarke, J., and Petithory, J. (1989).J. Biol. Chem. 264, 3998–4002.Google Scholar
  10. Argos, P., Mahoney, W. C., Hermodson, M. A., and Hanei, M. (1981).J. Biol. Chem. 256, 4357–4361.Google Scholar
  11. Azzaria, M., Schurr, E., and Gros, P. (1989).Mol. Cell. Biol. 9, 5289–5297.Google Scholar
  12. Bell, A. W., Buckel, S. D., Groarke, J. M., Hope, J. N., Kingsley, D. H., and Hermodson, M. A. (1986).J. Biol. Chem. 261, 7652–7658.Google Scholar
  13. Berger, E. A. (1973).Proc. Natl. Acad. Sci. USA 70, 1514–1518.Google Scholar
  14. Berger, E. A., and Heppel, L. A. (1974).J. Biol. Chem. 249, 7747–7755.Google Scholar
  15. Bishop, L., Agbayani, R., Ambudkar, S. V., Maloney, P. C., and Ames, G. F-L. (1989).Proc. Natl. Acad. Sci. USA 86, 6953–6957.Google Scholar
  16. Blight, M. A., and Holland, I. B. (1990).Mol Microbiol. 4, in press.Google Scholar
  17. Boyd, D., Manoil, C., and Beckwith, J. (1987).Proc. Natl. Acad. Sci. USA 84, 8525–8529.Google Scholar
  18. Brass, J. M., Higgins, C. F., Foley, M., Rugman, P. A., Birmingham, J., and Garland, P. B. (1986).J. Bacteriol. 165, 787–794.Google Scholar
  19. Buckel, S. D., Bell, A. W., Rao, J. K. M., and Hermodson, M. A. (1986).J. Biol. Chem. 261, 7659–7662.Google Scholar
  20. Cangelosi, G. A., Martinetti, G., Leigh, J. A., Lee, C. C., Theines, C., and Nester, E. W. (1989).J. Bacteriol. 171, 1609–1615.Google Scholar
  21. Chen, C., Misra, T., Silver, S., and Rosen, B. P. (1986a).J. Biol. Chem. 261, 15030–15038.Google Scholar
  22. Chen, C-J., Chin, J. E., Ueda, K., Clark, D. P., Pastan, I., Gottesman, M. M., and Roninson, I. B. (1986b).Cell 47, 381–389.Google Scholar
  23. Coulton, J. W., Mason, P., and Allatt, D. D. (1987).J. Bacteriol. 169, 3844–3849.Google Scholar
  24. Darawalla, K. R., Paxton, T., and Henderson, P. J. F. (1981).Biochem. J. 200, 611–627.Google Scholar
  25. Dassa, E., and Hofnung, M. (1985).EMBO J. 4, 2287–2293.Google Scholar
  26. Dean, D. A., Fikes, J. D., Gehring, K., Bassford, P. J., and Nikaido, H. (1989).J. Bacteriol. 171, 503–510.Google Scholar
  27. Doolittle, R. F., Johnson, M. S., Hussain, I., van Houton, B., Thomas, D. C., and Sancar, A. (1986).Nature 323, 451–453.Google Scholar
  28. Dreesen, T. D., Johnson, D. H., and Henikoff, S. (1988).Mol. Cell. Biol. 8, 5206–5215.Google Scholar
  29. Driessen, A. J. M., Kodde, J., De Jong, S., and Konings, W. N. (1987).J. Bacteriol. 169, 2748–2754.Google Scholar
  30. Dudler, R., Schmidhauser, C., Parish, R. W., Wettenhall, R. E. H., and Schmidt, T. (1988).EMBO J. 7, 3963–3970.Google Scholar
  31. Endicott, J. A., and Ling, V. (1989).Annu. Rev. Biochem. 58, 137–171.Google Scholar
  32. Evans, I. J., and Downie, J. A. (1986).Gene 43, 95–101.Google Scholar
  33. Felmlee, T., Pellett, S., and Welch, R. A. (1985).J. Bacteriol. 163, 94–105.Google Scholar
  34. Ferenci, T., Boos, W., Schwartz, M., and Szmelcman, S. (1977).Eur. J. Biochem. 75, 187–193.Google Scholar
  35. Foley, M., Brass, J. M., Birmingham, J., Cook, W. R., Garland, P. B., Higgins, C. F., and Rothfield, L. E. (1989).Mol. Microbiol. 3, 1329–1336.Google Scholar
  36. Foote, S. J., Thompson, J. K., Conman, A. F., and Kemp, D. J. (1989).Cell 57, 921–930.Google Scholar
  37. Friederich, M. J., de Veaux, L. C., and Kadner, R. J. (1986).J. Bacteriol. 167, 928–934.Google Scholar
  38. Froshauer, S., and Beckwith, J. (1984).J. Biol. Chem. 259, 10896–10903.Google Scholar
  39. Furlong, C. E. (1987). InEscherichia coli and Salmonella typhimurium (Neidhart, F. C., ed.), ASM Press, Washington, pp. 768–796.Google Scholar
  40. Gallagher, M. P., Pearce, S. R., and Higgins, C. F. (1989).Eur. J. Biochem. 180, 133–141.Google Scholar
  41. Gerlach, J. H., Endicott, J. A., Juranka, P. F., Henderson, G., Sarangi, F., Deuchars, K. L., and Ling, V. (1986).Nature (London)324, 425–489.Google Scholar
  42. Gill, D. R., Hatfull, G. F., and Salmond, G. P. C. (1986).Mol. Gen. Genet. 205, 134–145.Google Scholar
  43. Gilson, E., Nikaido, H., and Hofnung, M. (1982).Nucleic Acids Res. 10, 7449–7458.Google Scholar
  44. Gilson, E., Alloing, G., Schmidt, T., Claverys, J-P., Dudler, R., and Hofnung, M. (1988).EMBO J. 7, 3971–394.Google Scholar
  45. Glaser, D. J. (1988).EMBO J. 7, 3997–4004.Google Scholar
  46. Goodell, E. W., and Higgins, C. F. (1987).J. Bacteriol. 169, 3861–3865.Google Scholar
  47. Gowrishankar, J. (1989).J. Bacteriol. 171, 1923–1931.Google Scholar
  48. Gros, P., Croop, J., and Housman, D. (1986).Cell 47, 371–380.Google Scholar
  49. Guyer, C. A., Morgan, D. G., and Staros, J. V. (1986).J. Bacteriol. 168, 775–779.Google Scholar
  50. Hasmada, H. and Tsuruo, T. (1988).J. Biol. Chem. 263, 1454–1458.Google Scholar
  51. Hengge, R. and Boos, W. (1983).Biochim. Biophys. Acta 737, 443–478.Google Scholar
  52. Higgins, C. F. (1989).Nature (London)340, 342.Google Scholar
  53. Higgins, C. F. (1990a).Nature (London)341, 103.Google Scholar
  54. Higgins, C. F. (1990b).Res. Microbiol., in press.Google Scholar
  55. Higgins, C. F., and Ames, G. F-L. (1981).Proc. Natl. Acad. Sci. USA 78, 6038–6042.Google Scholar
  56. Higgins, C. F., Haag, P. D., Nikaido, K., Ardeshir, F., Garcia, G., and Ames, G. F-L. (1982).Nature (London)298, 723–727.Google Scholar
  57. Higgins, C. F., Hiles, I. D., Whalley, K., and Jamieson, D. J. (1985).EMBO J. 4, 1033–1040.Google Scholar
  58. Higgins, C. F., Hiles, I. D., Salmond, G. P. C., Gill, D. R., Downie, J. A., Evans, I. J., Holland, I. B., Gray, L., Buckel, S. D., Bell, A. W., and Hermodson, M. A. (1986).Nature (London)323, 448–450.Google Scholar
  59. Higgins, C. F., Gallagher, M. P., Mimmack, M. L., and Pearce, S. R. (1988).Bio Essays 8, 111–116.Google Scholar
  60. Higgins, C. F., Gallagher, M. P., Hyde, S. C., Mimmack, M. L., and Pearce, S. R. (1990).Philos. Trans. R. Soc. London B. 326 353–365.Google Scholar
  61. Hiles, I. D., and Higgins, C. F. (1986).Eur. J. Biochem. 158, 561–567.Google Scholar
  62. Hiles, I. D., Gallagher, M. P., Jamieson, D. J., and Higgins, C. F. (1987).J. Mol. Biol. 195, 125–142.Google Scholar
  63. Hobot, J. A., Carleman, E., Villiger, W., and Kellenberger, E. (1984).J. Bacteriol. 160, 143–152.Google Scholar
  64. Hobson, A. C., Weatherwax, R., and Ames, G. F-L. (1984).Proc. Natl. Acad. Sci. USA 81, 7333–7337.Google Scholar
  65. Hong, J-S., Hunt, A. G., Masters, P. S., and Lieberman, J. A., 1979).Proc. Natl. Acad. Sci. USA 76, 1213–1217.Google Scholar
  66. Horio, M., Gottesman, M. M., and Pastan, I. (1988).Proc. Natl. Acad. USA 85, 3580–3584.Google Scholar
  67. Hoshino, T., and Kose, K. (1989).J. Bacteriol. 171, 6300–6306.Google Scholar
  68. Hunt, A. G., and Hong, J-S. (1983).Biochemistry 22, 844–850.Google Scholar
  69. Husain, I., Houten, B. V., Thomas, D. C., and Sandcar, A. (1986).J. Biol. Chem. 261, 4895–4901.Google Scholar
  70. Hyde, S. C., Elmsley, P., Hartshorn, M., Mimmack, M. M., Gileadi, U., Pearce, S. R., Gallagher, M. P., Hubbard, R., and Higgins, C. F. (1990).Nature (London), submitted.Google Scholar
  71. Johann, S., and Hinton, S. M. (1987).J. Bacteriol. 169, 1911–1916.Google Scholar
  72. Joshi, A. K., Ahmed, S., and Ames, G. F.-L. (1989).J. Biol. Chem. 264, 2126–2133.Google Scholar
  73. Kashket, E. (1982).Biochemistry 21, 5534–5538.Google Scholar
  74. Kossman, M., Wolff, C., and Manson, M. D. (1988).J. Bacteriol. 170, 4516–4521.Google Scholar
  75. Kroll, J. S., Hopkins, I., and Moxon, E. R. (1988).Cell 53, 347–356.Google Scholar
  76. Kuchler, K., Sterne, R. E., and Thorner, J. (1989).EMBO J. 8, 3973–3984.Google Scholar
  77. Landick, R., and Oxender, D. L. (1985).J. Biol. Chem. 260, 8257.-8261.Google Scholar
  78. Lieberman, M. A., and Hong, J-S. (1976).Arch Biochem. Biophys. 172, 312–315.Google Scholar
  79. Maloney, P. C. (1990).Res. Microbiol, in press.Google Scholar
  80. Mao, B., Pear, M. R., McCammon, J. A., and Quiocho, F. A. (1982).J. Biol. Chem. 257, 1131–1133.Google Scholar
  81. McGrath, J. P., and Varshavsky, A. (1989).Nature (London)340, 400–404.Google Scholar
  82. Miller, D. M., Olson, J. S., Pflugrath, J. W., and Quiocho, F. A. (1983).J. Biol. Chem. 258, 13665–13672.Google Scholar
  83. Mimmack, M. L., Gallagher, M. P., Hyde, S. C., Pearce, S. R., Booth, I. R., and Higgins, C. F. (1989).Proc. Natl. Acad. Sci. USA 86, 8257–8261.Google Scholar
  84. Mowbray, S. L., and Petsko, G. A. (1983).J. Biol. Chem. 258, 7991–7997.Google Scholar
  85. Muir, M., Williams, C., and Ferenci, T. (1985).J. Bacteriol. 163, 1237–1242.Google Scholar
  86. Muller-Hill, B. (1983).Nature (London)302 163–164.Google Scholar
  87. O'Hare, K., Murphy, C., Levis, R., and Rubin, G. M. (1984).J. Mol. Biol. 180, 437–455.Google Scholar
  88. Ohyama, K., Fukuzana, H., Kohchi, T., Shirai, H., Sano, T., Sano, S., Umesono, K., Shiki, Y., Takeuchi, M., Chang, Z., Aota, S., Inokuchi, H., and Ozerki, H. (1986).Nature (London)322, 572–574.Google Scholar
  89. Overduin, P. Boos, W., and Tommassen, J. (1988).Mol. Microbiol. 2, 767–775.Google Scholar
  90. Payne, G., Spudich, E. N., and Ames, G. F.-L. (1985).Mol. Gen. Genet. 200, 493–496.Google Scholar
  91. Pflugrath, J. W., and Quiocho, F. A. (1988).J. Mol. Biol. 200, 163–180.Google Scholar
  92. Plate, C. A. (1979).J. Bacteriol. 137, 221–225.Google Scholar
  93. Plate, C. A., Suit, J. L., Jettern, A. M., and Luria, S. E. (1974).J. Biol. Chem. 249, 6138–6143.Google Scholar
  94. Poolman, B., Hellingwerf, K. J., and Konnings, W. N. (1987).J. Bacteriol. 169, 2272–2276.Google Scholar
  95. Prossnitz, E., Nikaido, K., Ulrich, S., and Ames, G. F.-L. (1988).J. Biol. Chem. 324, 17917–17920.Google Scholar
  96. Prossnitz, E., Gee, A., and Ames, G. F.-L. (1989).J. Biol. Chem. 264, 5006–5014.Google Scholar
  97. Quiocho, F. A. (1986).Annu. Rev. Biochem. 55, 287–316.Google Scholar
  98. Quiocho, F. A. (1990).Philos. Trans. R. Soc. Landon. B,326, 341–351.Google Scholar
  99. Rasched, J., Schuman, H., and Boos, W. (1976).Eur. J. Biochem. 69, 545–550.Google Scholar
  100. Reidl, J., Romisch, K., Ehrmann, M., and Boos, W. (1989).J. Bacteriol 171, 4888–4899.Google Scholar
  101. Reyes, M., Treptow, N. A., Schuman, H. A. (1986).J. Bacteriol. 165, 918–822.Google Scholar
  102. Richarme, G. (1982).Biochem. Biophys. Res. Commun. 105, 476–481.Google Scholar
  103. Richarme, G. (1985).J. Bacteriol. 162, 286–293.Google Scholar
  104. Richarme, G., and Heine, H-G. (1986).Eur. J. Biochem. 156, 399–405.Google Scholar
  105. Riordan, J. R.,et al. (1989).Science 245, 1066–1073.Google Scholar
  106. Ross, J. I., Eady, A., Cove, J. H., Cunliffe, W. J., Baumberg, S., and Wootton, J. C. (1990).Mol. Microbiol., in press.Google Scholar
  107. Rossman, M. G. (1975). InThe Enzymes (Boyer, P. D., ed.), Academic Press, New York, pp. 61–79.Google Scholar
  108. Sack, J. S., Saper, M. A., and Quicho, F. A. (1989).J. Mol. Biol. 206, 171–191.Google Scholar
  109. Schwarz, M., Summers, C., Heptinstall, C., Newton, C., Markham, A., Cain, R., and Super, M. (1990).Lancet, (in press).Google Scholar
  110. Scripture, J. B., Voelker, C., Miller, S., O'Donnell, R. T., Polgar, L., Rade, J., Horazdovsky, B. F., and Hogg, R. W. (1987).J. Mol. Biol. 197, 37–64.Google Scholar
  111. Seeberg, E., and Steinum, A.-L. (1982).Proc. Natl. Acad. Sci. USA 79, 988–992.Google Scholar
  112. Schuman, H. A. (1982a).J. Biol. Chem. 257, 5455–5461.Google Scholar
  113. Schuman, H. A. (1982b).Ann. Microbiol. (Inst. Pasteur) 133A, 153–159.Google Scholar
  114. Schuman, H. A., and Silhavy, T. J. (1981).J. Biol. Chem. 256, 560–562.Google Scholar
  115. Singh, A. P., and Bragg, P. D. (1979).Can. J. Biochem. 57, 1376–1383.Google Scholar
  116. Stanfield, S. W., Ielpi, L., O'Brochta, D., Helinski, D. R., and Ditta, G. S. (1988).J. Bacteriol. 170, 3523–3530.Google Scholar
  117. Staudenmaier, H., van Hove, B., Yaraghi, Z., and Braun, V. (1989).J. Bacteriol. 171, 2626–2633.Google Scholar
  118. Stirling, D. A., Hulton, C. S. J., Waddell, L., Park, S. F., Stewart, G. S. A. B., Booth, I. R., and Higgins, C. F. (1989).Mol. Microbiol. 3, 1025–1038.Google Scholar
  119. Strathdee, C. A., and Lo, R. Y. C. (1989).J. Bacteriol. 171, 916–828.Google Scholar
  120. Surin, B. P., Rosenberg, H., and Cox, G. B. (1985).J. Bacteriol. 161, 189–198.Google Scholar
  121. Tolley, S. P., Derewenda, Z., Hyde, S. C., Higgins, C. F., and Wilkinson, A. J. (1988).J. Mol. Biol. 204, 493–494.Google Scholar
  122. Treptow, N. A., and Schuman, H. A. (1985).J. Bacteriol. 163, 654–660.Google Scholar
  123. Treptow, N. A., and Schuman, H. A. (1988).J. Mol. Biol. 202, 809–822.Google Scholar
  124. Vyas, N. K., Vyas, M. N., and Quiocho, F. A. (1987).Nature (London)327, 635–638.Google Scholar
  125. Walker, J. E., Saraste, M., Runswick, M. J., and Gay, N. J. (1982).EMBO J. 1, 945–951.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • C. F. Higgins
    • 1
  • S. C. Hyde
    • 1
  • M. M. Mimmack
    • 1
  • U. Gileadi
    • 1
  • D. R. Gill
    • 1
  • M. P. Gallagher
    • 2
  1. 1.ICRF Laboratories, Institute of Molecular MedicineUniversity of Oxford, John Radcliffe HospitalOxfordEngland
  2. 2.Department of MicrobiologyUniversity of EdinburghEdinburghScotland

Personalised recommendations