Journal of Bioenergetics and Biomembranes

, Volume 25, Issue 2, pp 177–188 | Cite as

Coordination dynamics of heme-copper oxidases. The ligand shuttle and the control and coupling of electron transfer and proton translocation

  • William H. Woodruff
Article

Abstract

Results are presented which, taken with evidence developed by others, suggest a general mechanism for the entry and binding of exogenous ligands (including O2) at the “binuclear site” (CuB Fea3) of the heme-copper oxidases. The mechanism includes a “ligand shuttle” wherein the obligatory waystation for incoming ligands is CuB and the binding of exogenous ligands at this site triggers the exchange and displacement of endogenous ligands at Fea3. It is suggested that these ligand shuttle reactions might be functionally important in providing a coupling mechanism for electron transfer and proton translocation. Scenarios as to how this might happen are delineated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    “Cytochrome Oxidase-A Synthesis”, Wilktrom, M., Krab, K., and Saraste, M., Academic Press, New York (1981).Google Scholar
  2. 2.
    “Structure and Function of Cytochrome Oxidase: A Second Look,” Brunori, M., Antonini, F., Malatesta, P., Sarti P., and Wilson, M. T.,Adv. Inorg. Biochem.,7, 93–153 (1988).Google Scholar
  3. 3.
    “Cytochromec Oxidase: Understanding Nature's Design of a Proton Pump”, Chan, S. I., and Li, P. M.,Biochemistry 29, 1 (1990); “The Proton-Pumping Site of Cytochrome Oxidase: A Model of Its Structure and Mechanism,” Gelles, J., Blair, D. F., and Chan, S. I.,Biochim. Biophys. Acta 853, 205–236 (1986).Google Scholar
  4. 4.
    “The Mechanism of Electron Gating in Proton Pumping Cytochrome Oxidase: The Effect of pH and Temperature on Internal Electron Transfer,” Brzezinski, B., and Malmstrom, B. G.,Biochem. Biophys. Acta 894, 29–38 (1987); Malmström, B. G.,Chem. Rev. 90, 1247–1260 (1990).Google Scholar
  5. 5.
    “Oxygen Activation and the Conservation of Energy in Cell Respiration,” Babcock, G. T., and Wikström, M.,Nature (London) 356, 301–309 (1992).Google Scholar
  6. 6.
    “A Comparison of the Resonance Raman Properties of the Fast and Slow Forms of Cytochrome Oxidase,” Schoonover, J. R., Dyer, R. B., Woodruff, W. H., Baker, G. M., and Palmer, G.,Biochemistry,27, 5433 (1988).Google Scholar
  7. 7.
    “An Infrared Study of the Binding and Photodissociation of Carbon Monoxide in Cytochromeba 3 fromThermus thermophilus, Einarsdóttir, O, Killough, P. M., Fee, J. A., and Woodruff, H.,J. Biol. Chem.,264, 2405 (1989).Google Scholar
  8. 8.
    “Time-Resolved Resonance Raman Spectroscopy Detectsv(Fe-O) in the Reduction of O2 by Cytochrome Oxidase,” Varotsis, C., Woodruff, W. H., and Babcock, G. T.,J. Am. Chem. Soc.,111, 6439 (1989); “Time-Resolved Resonance Raman Spectroscopy of Transient species Formed During the Oxidation of Cytochrome Oxidase by Dioxygen,” Babcock, G. T., Jean, J. M., Johnston, L. N., Palmer, G., and Woodruff, W. H.,J. Am. Chem. Soc. 106, 8305 (1984); “Flow-Flash, Time-Resolved Resonance Raman Spectroscopy of the Oxidation of Reduced and Mixed-Valence Cytochrome Oxidase by Dioxygen,” Babcock, G. T., Jean, J. M., Johnston, L. N., Palmer, G., and Woodruff, W. H.,J. Inorg. Biochem. 23, 243 (1985).Google Scholar
  9. 9.
    “Transient Binding of Photodissociated CO to CuB+ of Eukaryotic Cytochrome Oxidase at Ambient Temperature. Direct Evidence from Time-Resolved Infrared Spectroscopy,” Dyer, R. B., Einarsdóttir, Ó., Killough, P. M., López-Garriga, J. J., and Woodruff, W. H.,J. Am. Chem. Soc. 111, 7657 (1989).Google Scholar
  10. 10.
    “The Orientation of CO in Carbon Monoxy Cytochrome Oxidase and Its Transient Photoproducts. Direct Evidence from Time-Resolved Infrared Linear Dichroism,” Dyer, R. B., López-Garriga, J. J., Einarsdóttir, Ó., and Woodruff, W. H.,J. Am. Chem. Soc. 111, 8962 (1989).Google Scholar
  11. 11.
    “Fourier Transform Infrared and Resonance Raman Characterization of Cytochromeba 3 fromThermus Thermophilus,” Einarsdóttir, Ó., Dyer, R. B., Killough, P. M., Fee, J. A., and Woodruff, W. H.,SPIE Proc. 1055, 254 (1989).Google Scholar
  12. 12.
    “Direct Detection of a Dioxygen Adduct of Cytochromea 3 in the Mixed Valence Cytochrome Oxidaase/Dioxygen Reaction,” Varotsis, C., Woodruff, W. H., and Babcock, G. T.,J. Biol. Chem. 265, 11131 (1990).Google Scholar
  13. 13.
    “The Nature and Functional Implications of the Cytochromea 3 Intermediate after Photodissociation of CO-Cytochrome Oxidase,” Woodruff, W. H., Einarsdóttir, Ó., Dyer, R. B., Bagley, K. A., Palmer, G., Atherton, S. J., Goldbeck, R. A., Dawes, T. D., and Kliger, D. S.,Proc. Natl. Acad. Sci. USA,88, 2588 (1991).Google Scholar
  14. 14.
    “Time-Resolved Magnetic Circular Dichroism Spectroscopy of Photolyzed Carbonmonoxy Cytochromec Oxidase (Cytochromeaa 3),” Goldbeck, R. A., Dawes, T. D., Einarsdóttir, Ó., Woodruff, W. H., and Kliger, D. S.,Biophys. J. 60, 125 (1991).Google Scholar
  15. 15.
    “Ultrafast Photoinduced Ligand Transfer in CO-Cytochromec Oxidase. Observation by Picosecond Infrared Spectroscopy,” Dyer, R. B., Peterson, K. A., Stoutland, P. O., and Woodruff, W. H.,J. Am. Chem. Soc. 113, 6276 (1991).Google Scholar
  16. 16.
    “Femtosecond Dynamics of Reduced Cytochrome Oxidase and Its CO Derivative,” Stoutland, P. O., Lambry, J.-C., Martin, J.-L., and Woodruff, W. H.,J. Phys. Chem. 95, 6406 (1991).Google Scholar
  17. 17.
    “Ultrafast and Not-So-Fast Dynamics of Cytochrome Oxidase: The Ligand Shuttle and Its Possible Functional Significance,” Woodruff, W. H., Dyer, R. B., Einarsdóttir, Ó., Peterson, K. A., Stoutland, P. O., Bagley, K. A., Palmer, G., Schoonover, J. R., Kliger, D. S., Goldbeck, R. A., Dawes, T. D., Martin, J.-L., Lambry, J.-C., Atherton, S. J., and Hubig, S. M.,SPIE Proc. 1432, 205 (1991).Google Scholar
  18. 18.
    “Time-Resolved Infrared Studies of the Dynamics of Ligand Binding to Cytochromec Oxidase,” Dyer, R. B., Peterson, K. A., Stoutland, P. O., and Woodruff, W. H.,SPIE Proc. 1432, 198 (1991).Google Scholar
  19. 19.
    “The ‘Ligand Shuttle’ Reactions of Cytochrome Oxidase: Spectroscopic Evidence, Dynamics, and Functional Significance,” Woodruff, W. H., Dyer, R. B., Einarsdóttir, Ó., Peterson, K. A., Stoutland, P. O., Bagley, K. A., Palmer, G., Schoonover, J. R., Kliger, D. S., Goldbeck, R. A., Dawes, T. D., Martin, J.-L., Lambry, J.-C., Atherton, S. J., and Hubig, S. M., inSpectroscopy of Biological Molecules, Hester, R. E., and Girling, R. B., eds., The Royal Society of Chemistry, Cambridge (1991), p. 235.Google Scholar
  20. 20.
    “Ultrafast and Not-So-Fast Dynamics of Cytochrome Oxidase: The Ligand Shuttle and Its Possible Relevance to Proton Translocation,” Woodruff, W. H., Dyer, R. B., Peterson, K. A., Stoutland, P. O., Bagley, K. A., Einarsdóttir, Ó., Kliger, D. S., Goldbeck, R. A., Dawes, T. D., Martin, J.-L., Lambry, J.-C., Palmer, G., Atherton, S. J., and Hubig, S. M.,Inorg. Biochem. 43, 351 (1991).Google Scholar
  21. 21.
    “Ultrafast and Not-So-Fast Dynamics of Cytochrome Oxidase: The Ligand Shuttle and its Possible Relevance to Proton Translocation,” Woodruff, W. H., Dyer, R. B., Peterson, K. A., Stoutland, P. O., Bagley, K. A., Einarsdóttir, Ó., Kliger, D. S., Goldbeck, R. A., Dawes, T. D., Martin, J.-L., Lambry, J.-C., Palmer, G., Atherton, S. J., and Hubig, S. M.,Inorg. Biochem. 43, 351 (1991).Google Scholar
  22. 22.
    “Reaction of cyanide with cytochromeba3 fromThermus thermophilus: spectroscopic characterization of the Fe(II)a3·CN::CuB(II)·CN complex suggests four N atoms are coordinated to CuB,” Surerus, K. K., Oertling, W. A., Fan, C., Gurbiel, R. J., Einarsdóttir, Ó., Antholine, W. E., Dyer, R. B., Hoffman, B. M., Woodruff, W. H., and Fee, J. A.,Proc. Natl. Acad. Sci. USA 89, 3195 (1992).Google Scholar
  23. 23.
    “Photodissociation and Recombination of Carbonmonoxy Cytochrome Oxidase: Dynamics from Picoseconds to Kiloseconds,” Einarsdóttir, Ó., Dyer, R. B., Lemon, D. D., Killough, P. M., Hubig, S. M., Atherton, S. J., López-Garriga, J. J., Palmer, G., and Woodruff, W. H.,Biochemistry, submitted (1992).Google Scholar
  24. 24.
    “Ultrafast Infrared Spectroscopy,” Stoutland, P. O., Dyer, R. B., and Woodruff, W. H.,Science 257, 1913 (1992).Google Scholar
  25. 25.
    “Spectroscopy, Dynamics, and Function of Cytochrome Oxidase,” Woodruff, W. H., Dyer, R. B., and Einarsdóttir, Ó., inAdvances in Spectroscopy, Clark, R. J. H., and Hester, R. E., eds., in press (1992).Google Scholar
  26. 26.
    “The Sequence of thecyo Operon Indicates Substantial Structural Similarities between the Cytochromeo Ubiquinol Oxidase ofEscherichia coli and theaa 3-type Family of Cytochromec Oxidases,” Chepuri, V., Lemieux, L., Au, D. C.-T., and Gennis, R. B.,J. Biol. Chem. 265, 11185–11192 (1990); “Definition of the Catalytic Site of Cytochromec Oxidase: The Specific Ligands of Hemea and the Hemea 3-CuB Center,” Shapleigh, J. P., Hosler, J. P., Tecklenburg, M. M. J., Kim, Y., Babcock, G. T., Gennis, R. B., and Ferguson-Miller, S.,Proc. Natl. Acad. Sci. USA, in press (1992).Google Scholar
  27. 27.
    Gennis, R. B., and Ferguson-Miller, S.,J. Bioenerg. Biomembr., this issue (1992).Google Scholar
  28. 28.
    “Nature of Biological Electron Transfer,” Moser, C. C., Keske, J. M., Warncke, K., Farid, R. S., and Dutton, P. L.,Nature (London) 355, 796–802 (1992); Moser, C. C., and Dutton, P. L.,Biochim. Biophys. Acta 1101, 171–176 (1992).Google Scholar
  29. 29.
    “Electron-Tunneling Pathways in Cytochromec,” Wuttke, D. S., Bjerrum, M. J., Winkler, J. R., and Gray, H. B.,Science 256, 1007–1009 (1992); “Electron-Tunneling Pathways in Ruthenated Proteins,” Beratan, D. N., Onuchic, J. N., Betts, J. N., Bowler, B. F., and Gray, H. B.,J. Am. Chem. Soc. 112, 7915–7921 (1990).Google Scholar
  30. 30.
    “Cytochromea and Cytochrome Oxidase,” Keilin, D. and Hartree, E. F.,Nature (London) 141, 870–871 (1938).Google Scholar
  31. 31.
    “Intermediate Steps in the Reaction of Cytochrome Oxidase with Molecular Oxygen,” Hill, B. C., Greenwood, C., and Nicholls, P.,Biochim. Biophys. Acta 853, 91 (1986).Google Scholar
  32. 32.
    “Time-Resolved Resonance Raman Spectroscopy of Transient Species Formed during the Oxidation of Cytochrome Oxidase by O2,” Babcock, G. T., Jean, J. M., Johnston, L. N., Palmer, G., and Woodruff, W. H.,J. Am. Chem. Soc. 106, 8305–8306 (1984).Google Scholar
  33. 33.
    “The Site and Mechanism of Dioxygen Reduction in Bovine Heart Cytochromec Oxidase,” Einarsdóttir, Ó., Choc, M. G., Weldon, S., and Caughey, W. S.,J. Biol. Chem. 263, 13641 (1988).Google Scholar
  34. 34.
    “Structure of Cytochromea 3-Cua3 Couple in Cytochromec Oxidase as Revealed by Nitric Oxide Binding Studies,” Stevens, T. H., Brudwig, G. W., Bocian, D. F., and Chan, S. I.,Proc. Natl. Acad. Sci. USA 76, 3320–3324 (1979).Google Scholar
  35. 35.
    “Structure of the Cytochrome Oxidase (a 3) Heme Pocket: Low-Temperature FTIR Spectroscopy of the Photolyzed CO Complex,” Alben, J. O., Altschuld, R. A., Fiamingo, F. G., and Moh, P. P., in “Electron Transport and Oxygen Utilization,” Ho, C., ed., Elsevier, New York (1982), pp. 205–208.Google Scholar
  36. 36.
    “Cytochromeo (bo) is a Proton Pump inParacoccus denitrificans andEscherichia coli,” Puustinen, A., Finel, M., Virkki, M., and Wikström, M.,FEBS Lett. 249, 163–167 (1989).Google Scholar
  37. 37.
    “Mechanisms of Electron Tansfer,” Reynolds, W. L., and Lumry, R. W., Ronald Press, New York (1966).Google Scholar
  38. 38.
    “Reactions of Cytochrome Oxidase with Oxygen and Carbon Monoxide,” Gibson, Q. H., and Greenwood, C.,Biochem. J. 86, 541–554 (1963).Google Scholar
  39. 39.
    “The Reaction of Reduced Cytochromec Oxidase with Oxygen,” Greenwood, C., and Gibson, Q. H.,J. Biol. Chem. 242, 1782–1787 (1967).Google Scholar
  40. 40.
    Chance, B., Saronio, C., and Leigh, J. S., Jr. (1975),J. Biol. Chem. 250, 9226–9237.Google Scholar
  41. 41.
    “Studies of the Primary Oxygen Intermediate in the Reaction of Fully Reduced Cytochrome Oxidase,” Blackmore, R. S., Greenwood, C., and Gibson, Q. H.,J. Biol. Chem. 266, 19245 (1991).Google Scholar
  42. 42.
    “The Reaction of Dioxygen with Cytochromec Oxidase Reduced to Different Degrees: Indications of a Transient Dioxygen Complex with Copper-B,” Oliveberg, M. and Malmström, B. G.,Biochemistry 31, 3560–3563 (1992).Google Scholar
  43. 43.
    “Resolution of the Reaction Sequence during the Reduction of O2 by Cytochrome Oxidase,” Varotsis, C., Zhang, Y., Appleman, E. H., and Babcock, G. T.,Proc. Natl. Acad. Sci. USA, in press (1992).Google Scholar
  44. 44.
    “Investigations of Cyanide as an Infrared Probe of Hemeprotein Ligand Binding Sites,” Yoshikawa, S., O'Keeffe, D. H., and Caughey, W. S.,J. Biol. Chem. 260, 3518 (1985).Google Scholar
  45. 45.
    “The Reaction of Cytochrome Oxidase with Cynanide. Preparation of the Rapidly Reacting Form and Its Conversion to the Slowly Reacting Form,” Baker, G. M., Noguchi, M., and Palmer, G.,J. Biol. Chem. 262, 595–604 (1987).Google Scholar
  46. 46.
    “Resolution of the Electronic Transitions of Cytochromec Oxidase: Evidence for Two Conformational States of Ferrous Cytochromea,” Sherman, D., Kotake, S., Ishibe, N., and Copeland, R. A.,Proc. Natl. Acad. Sci. USA 88, 4265–4269 (1991).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • William H. Woodruff
    • 1
  1. 1.Spectroscopy and Biochemistry Group, INC-14Los Alamos National LaboratoryLos Alamos

Personalised recommendations