Advertisement

General Relativity and Gravitation

, Volume 4, Issue 2, pp 105–129 | Cite as

On shear free normal flows of a perfect fluid

  • A. Barnes
Research Articles

Abstract

Flows of a perfect fluid in which the flow-lines form a time-like shear-free normal congruence are investigated. The space-time is quite severely restricted by this condition on the flow: it must be of Petrov Type I and is either static or degenerate. All the degenerate fields are classified and the field equations solved completely, except in one class where one ordinary differential equation remains to be solved. This class contains the spherically symmetric non-uniform density fields and their analogues with planar or hyperbolic symmetry. The type D fields admit at least a one-parameter group of local isometries with space-like trajectories. All vacuum fields which admit a time-like shear-free normal congruence are shown to be static. Finally, shear-free perfect fluid flows which possess spherical or a related symmetry are considered, and all uniform density solutions and a few non-uniform density solutions are found. The exact solutions are tabulated in section 7.

Keywords

Fluid Flow Field Equation Differential Geometry Normal Flow Perfect Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Trümper, M. (1962).Z. Phys.,168, 55.Google Scholar
  2. 2.
    Ehlers, J. (1961).Akad. Wiss. Mainz, Math-Nat. Kl., No. 11.Google Scholar
  3. 3.
    Kundt, W. and Trümper, M. (1962).Akad. Wiss. Mainz, Math-Nat. Kl., No. 12.Google Scholar
  4. 4.
    Hawking, S.W. (1966).Singularities and the Geometry of Space-Time, (Essay submitted for the Adams Prize, 1966).Google Scholar
  5. 5.
    Hawking, S.W. (1966).Astrophys. J.,145, 544.Google Scholar
  6. 6.
    Synge, J.L. (1937).Proc. Lond. Math. Soc.,43, 376.Google Scholar
  7. 7.
    Eisenhart, L.P. (1949).Riemannian Geometry, (Princeton University Press, Princeton, N.J.), p. 92.Google Scholar
  8. 8.
    Robertson H.T. and Noonan, T.W. (1968).Relativity and Cosmology, (W.B. Saunders Co., Philadelphia, Pa.), p. 219, 325.Google Scholar
  9. 9.
    Thompson, I.H. and Whitrow, G.J. (1967).M. Not. R. Astr. Soc.,136, 207;ibid,139, 499.Google Scholar
  10. 10.
    Schwarzschild, K. (1916).Sitzber. Preuss. Akad. Wiss., p.189 and 424.Google Scholar
  11. 11.
    Estabrook, F. and Wahlquist, H. (1967).Phys. Rev.,156, 1359.Google Scholar
  12. 12.
    Stepanyuk, N.M. (1968).Sov. Phys. JETP,26, 369.Google Scholar
  13. 13.
    Barnes, A. (1972).J. Phys. A,5, 374.Google Scholar
  14. 14.
    Jordan, P., Ehlers, J. and Kundt, W. (1960).Akad. Wiss. Mainz. Math-Nat. Kl., No. 2.Google Scholar
  15. 15.
    Barnes, A. (1971). Thesis, (University of London).Google Scholar
  16. 16.
    Trümper, M. (1965).J. Math. Phys.,6, 584.Google Scholar
  17. 17.
    Levi-Civita, T. (1917–19).Rend. Acc. Lincei,26–28, (nine articles).Google Scholar
  18. 18.
    Birkhoff, G.D. (1927).Relativity and Modern Physics, (Cambridge University Press).Google Scholar
  19. 19.
    Tolman, R.C. (1939).Phys. Rev.,55, 364.Google Scholar
  20. 20.
    Bondi, H. (1964).Proc. Roy. soc. A,282, 303.Google Scholar
  21. 21.
    Harrison, B.K., Thorne, K.S., Wakano, M. and Wheeler, J.A. (1965).Gravitational Theory and Gravitational Collapse, (Chicago University Press).Google Scholar
  22. 22.
    Bonnor, W.B. and Faulkes, M.C. (1967).Mon. Not. R. Astr. soc.,137, 239.Google Scholar
  23. 23.
    Bondi, H. (1969).Mon. Not. R. Astr. Soc.,142, 333.Google Scholar
  24. 24.
    Whittaker, E.T. and Watson, G.N. (1969).A Course in Modern Analysis, (Cambridge University Press), pp. 429–461.Google Scholar
  25. 25.
    Cahill, M.E. and McVittie, G.C. (1970).J. Math. Phys.,11, 1382.Google Scholar
  26. 26.
    Faulkes, M.C. (1970).Prog. Theor. Phys.,42, 1139.Google Scholar
  27. 27.
    Nariai, H. (1969).Prog. Theor. Phys.,40, 1013.Google Scholar

Copyright information

© Plenum Publishing Company Limited 1973

Authors and Affiliations

  • A. Barnes
    • 1
  1. 1.Department of MathematicsImperial College of Science and TechnologyLondon SW7

Personalised recommendations