Journal of Bioenergetics and Biomembranes

, Volume 26, Issue 4, pp 369–377 | Cite as

Dehydroascorbate reduction

  • William W. Wells
  • Dian Peng Xu
Article

Abstract

Dehydroascorbic acid is generated in plants and animal cells by oxidation of ascorbic acid. The reaction is believed to occur by the one-electron oxidation of ascorbic acid to semidehydroascorbate radical followed by disproportionation to dehydroascorbic acid and ascorbic acid. Semidehydroascorbic acid may recycle to ascorbic acid catalyzed by membrane-bound NADH-semidehydroscorbate reductase. However, disproportionation of the free radical occurs at a rapid rate, 105 M−1 s−1, accounting for measurable cellular levels of dehydroascorbate. Dehydroascorbate reductase, studied earlier and more extensively in plants, is now recognized as the intrinsic activity of thioltransferases (glutaredoxins) and protein disulfide isomerase in animal cells. These enzymes catalyze the glutathione-dependent two-electron regeneration of ascorbic acid. The importance of the latter route of ascorbic acid renewal was seen in studies of GSH-deficient rodents (Meister, A. (1992)Biochem. Pharmacol.44 1905–1915). GSH deficiency in newborn animals resulted in decreased tissue ascorbic acid and increased dehydroascorbate-to-ascorbate ratios. Administration of ascorbic acid daily to GSH-deficient animals decreased animal mortality and cell damage from oxygen stress. A cellular role is proposed for dehydroascorbate in the oxidation of nascent protein dithiols to disulfides catalyzed in the endoplasmic reticulum compartment by protein disulfide isomerase.

Key words

Dehydroascorbic acid ascorbic acid semidehydroascorbic acid glutathione glutathione: dehydroascorbate oxidoreductase NADH semidehydroascorbate reductase l-buthionine-SR-sulfoximine gastric ascorbate protein disulfide bonds protein disulfide isomerase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn, B.-Y., and Moss, B. (1992).Proc. Natl. Acad. Sci. USA 139, 7060–7064.Google Scholar
  2. Banerjee, S. (1943).Ann. Biochem. Exp. Med. III, 157–164.Google Scholar
  3. Banerjee, S. (1944).Ann. Biochem. Exp. Med. IV, 33–36.Google Scholar
  4. Bielski, B. H. J. (1982). InAscorbic Acid: Chemistry, Metabolism, and Uses (Seib, P. A., and Tolbert, B. M., eds.), Advances in Chemistry Series 200 (Comstock, M. J., ed.), American Chemical Soc., pp. 81–100.Google Scholar
  5. Bigley, R. H., and Stankova, L. (1974).J. Exp. Med. 139, 1084–1092.Google Scholar
  6. Bigley, R. H., Riddle, M., Layman, D., and Stankova, L. (1981).Biochim. Biophys. Acta 659, 15–29.Google Scholar
  7. Borsook, H., Davenport, H. W., Jeffreys, C. E. P., and Warner, R. C. (1937).J. Biol. Chem. 117, 237–279.Google Scholar
  8. Choi, J.-L., and Rose, R. C. (1989).Proc. Soc. Exp. Biol. Med. 190, 369–374.Google Scholar
  9. Christine, L., Thomson, G., Iggo, B. Brownie, A. C., and Stewart, C. P. (1956).Clin. Chim. Act 1, 557–569.Google Scholar
  10. Coassin, M., Tomasi, A., Vannini, V., and Ursini, F. (1991).Arch. Biochem. Biophys. 290, 456–462.Google Scholar
  11. Creighton, T. E. (1984).Methods Enzymol. 107, 3035–3329.Google Scholar
  12. Crook, E. M. (1941).Biochem. J. 35, 226–236.Google Scholar
  13. Crook, E. M., and Hopkins, F. G. (1938).Biochem. J. 32, 1356–1363.Google Scholar
  14. Dabrowski, K. (1990).Comp. Biochem. Physiol. 95A, 481–486.Google Scholar
  15. Foerster, G. v., Weiss, W., and Staudinger, HJ. (1965).Justus Liebig's Ann. Chem. 690, 166–169.Google Scholar
  16. Foyer, C. H., and Halliwell, B. (1977).Phytochemistry 16, 1347–1350.Google Scholar
  17. Freedman, R. B. (1989).Cell 57, 1069–1072.Google Scholar
  18. Gan, Z-R., and Wells, W. W. (1989).J. Biol. Chem. 263, 9050–9054.Google Scholar
  19. Givol, D., Goldberger, R. F., and Anfinssen, C. B. (1964).J. Biol. Chem. 239, PC3114-PC3116.Google Scholar
  20. Goldenberg, H. (1980).Biochem. Biophys. Res. Commun. 94, 721–726.Google Scholar
  21. Griffith, O. W., and Meister, A. (1979).J. Biol. Chem. 254, 7558–7560.Google Scholar
  22. Grimble, R. F., and Hughes, R. E. (1967).Experientia (Basel) 23/5 362.Google Scholar
  23. Han, J., Mårtensson, J., Meister, A., and Griffith, O. W. (1992).FASEB J. 6, 5631.Google Scholar
  24. Hillson, D. A., Lambert, N., and Freedman, R. B. (1984).Methods Enzymol. 107, 281–293.Google Scholar
  25. Hossain, M. A., and Asada, K. (1984).Plant Cell Physiol. 25, 85–92.Google Scholar
  26. Hughes, R. E. (1964).Nature (London) 203, 1068–1069.Google Scholar
  27. Hwang, C., Sinskey, A. J., and Lodish, H. F. (1992).Science 257, 1496–1502.Google Scholar
  28. Jain, A., Mårtensson, J., Stole, E., Auld, P. A. M., and Meister, A. (1991).Proc. Natl. Acad. Sci. USA 88, 1913–1917.Google Scholar
  29. Kersten, H., Kersten, W., and Staudinger, Hj. (1958).Biochim. Biophys. Acta 27, 598–608.Google Scholar
  30. Levine, M., Morita, K., and Pollard, H. (1985).J. Biol. Chem. 260, 12942–12947.Google Scholar
  31. Lindstedt, G., and Lindstedt, S. (1970).J. Biol. Chem. 245, 4178–4186.Google Scholar
  32. Lumper, vL., Schneider, W., and Staudinger, Hj. (1967).Hoppe-Seyler's Z. Physiol. Chem. 348, 323–328.Google Scholar
  33. Mårtensson, J., and Meister, A. (1991).Proc. Natl. Acad. Sci. USA 88, 4656–4660.Google Scholar
  34. Mårtensson, J., Steinherz, R., Jain, A., and Meister, A. (1989).Proc. Natl. Acad. Sci. USA 86, 8727–8731.Google Scholar
  35. Mårtensson, J., Jain, A., Stole, E., Frayer, W., Auld, P. A. M., and Meister, A. (1991).Proc. Natl. Acad. Sci. USA 88, 9360–9364.Google Scholar
  36. Meister, A. (1992).Biochem. Pharmacol. 44, 1905–1915.Google Scholar
  37. Mieyal, J. J., Stark, D. W., Gravina, S. A., Dothey, C., and Chung, J. S. (1991).Biochemistry 30, 6088–6097.Google Scholar
  38. Myllylä, R., Kuutti-Savolainen, E. R., and Kiririkko, K. I. (1978).Biochem. Biophys. Res. Commun. 83, 441–448.Google Scholar
  39. Niki, E., Tsuchiya, J., Tanimura, R., and Kamiya, Y. (1982).Chem. Lett., 789–792.Google Scholar
  40. Ohba, H., Harano, R., and Omura, T. (1981).J. Biochem. 89, 889–900.Google Scholar
  41. Ohmori, M., and Takagi, M. (1978).Agric. Biol. Chem. 42, 173–174.Google Scholar
  42. Pecherer, B. (1951).J. Am. Chem. Soc. 73, 3827–3830.Google Scholar
  43. Pfankuch, E. (1934).Naturwissenschaften 22, 821.Google Scholar
  44. Pietronigro, D. D., Hovsepian, M., Demopoulos, H. B., and Flamm, E. S. (1985).Brain Res. 333, 161–164.Google Scholar
  45. Poulsen, L. L., and Ziegler, D. M. (1977).Arch. Biochem. Biophys. 183, 562–570.Google Scholar
  46. Puget, K., and Michaelson, A. M. (1974).Biochimie 56, 1255–1267.Google Scholar
  47. Schneider, W., and Staudinger, Hj. (1965).Biochim. Biophys. Acta 96, 157–159.Google Scholar
  48. Schultze, M. O., Statz, E., and King, C. G. (1938).J. Biol. Chem. 122, 395–406.Google Scholar
  49. Schulze, H.-U., Gallenkamp, H., and Staudinger, Hj. (1970).Hoppe-Seyler's Z. Physiol. Chem. 351, 309–317.Google Scholar
  50. Sigal, A., and King, C. G. (1936).J. Biol. Chem. 116, 489–492.Google Scholar
  51. Sjostrand, S. E. (1970).Acta Physiol. Scand., Suppl. 356, 1–79.Google Scholar
  52. Stahl, R. L., Liebes, L. F., and Silber, R. (1985).Biochim. Biophys. Acta 839, 119–121.Google Scholar
  53. Sun, I. L., Morre, D. J., Crane, F. L., Safranski, K., and Crose, E. M. (1984).Biochim. Biophys. Acta 797, 266–275.Google Scholar
  54. Szent Györgyi, A. (1928).Biochem. J. 22, 1387–1409.Google Scholar
  55. Tolbert, B. M., and Ward, J. B. (1982). InAscorbic Acid: Chemistry, Metabolism, and Uses (Seib, P. A., and Tolbert, B. M., eds.), Advances in Chemistry Series 200 (Comstock, M. J., ed.),Am. Chem. Soc., pp. 101–123.Google Scholar
  56. Venetianer, P., and Straub, F. B. (1964).Biochim. Biophys. Acta 89, 189–190.Google Scholar
  57. Venetianer, P., and Straub, F. B. (1965).Acta Physiol. Acad. Sci. Hung. 27, 303–315.Google Scholar
  58. Washko, P. W., Wang, Y., and Levine, M. (1993).J. Biol. Chem. 268, 15531–15535.Google Scholar
  59. Wells, W. W., Xu, D. P., Yang, Y., and Rocque, P. A. (1990).J. Biol. Chem. 265, 15361–15364.Google Scholar
  60. Wells, W. W., Yang, Y., Deits, T. L., and Gan, Z-R. (1993). InAdvances in Enzymol. and Related Areas of Molecular Biology (Meister, A., ed.),66, 149–201.Google Scholar
  61. Wells, W. W., Xu, D. P., and Washburn, M. P. (1994).Methods Enzymol., Biothiols, in press.Google Scholar
  62. Yamaguchi, M., and Joslyn, M. A. (1952).Arch. Biochem. Biophys. 38, 451–465.Google Scholar
  63. Yamamoto, Y., Sato, M., and Ikeda, S. (1977).Bull. Jpn. Soc. Sci. Fish. 43, 53–57.Google Scholar
  64. Yamazaki, I., and Piette, L. H. (1961).Biochim. Biophys. Acta 50, 62–69.Google Scholar
  65. Yang, Y., and Wells, W. W. (1991a).J. Biol. Chem. 266, 12759–12765.Google Scholar
  66. Yang, Y., and Wells, W. W. (1991b).J. Biol. Chem. 266, 12766–12771.Google Scholar
  67. Zilva, S. S. (1927).Biochem. J. 21, 689–697.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • William W. Wells
    • 1
  • Dian Peng Xu
    • 1
  1. 1.Department of BiochemistryMichigan State UniversityEast Lansing

Personalised recommendations