Journal of Bioenergetics and Biomembranes

, Volume 26, Issue 4, pp 359–367 | Cite as

Transport of vitamin C in animal and human cells

  • Hans Goldenberg
  • Esther Schweinzer
Article

Abstract

The transport systems of animal and human tissues for vitamin C are reviewed with respect to their properties. It emerges that pure diffusion plays only a very minor role, while a variety of more or less specific transporters is found on cellular membranes. Although most tissues prefer the reduced ascorbate over the oxidized dehydroascorbic acid and have high-affinity transporters for it, there are several examples for the reversed situation. Special attention is given to similarity or identity with glucose transporters, especially the GLUT-1 and the sodium-dependent intestinal and renal transporters, and to the very widespread dependence of ascorbate transport on sodium ions. The significance of ascorbate transport for vitamin C-requiring and nonrequiring species as well as alterations in states of disease can be seen from ample experimental evidence.

Key words

Ascorbate transport oxidized dehydroascorbic acid high affinity transporters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleo, J. J., and Padh, H. (1985).Proc. Soc. Exp. Biol. Med. 179 128–131.Google Scholar
  2. Arakawa, N., Suzuki, E., Kurata, T., Otsuka, M., and Inagaki, C. (1986).J. Nutr. Sci. Vitaminol. Tokyo 32 171–181.Google Scholar
  3. Bassingthwaighte, J. B., Kuikka, J. T., Chan, I. S., Arts, T., and Reneman, R. S. (1985).Am. J. Physiol. 249 H141–149.Google Scholar
  4. Bianchi, J., and Rose, R. C. (1985a).Biochim. Biophys. Acta 819 75–82.Google Scholar
  5. Bianchi, J., and Rose, R. C. (1985b).Biochim. Biophys. Acta. 820 265–273.Google Scholar
  6. Bianchi, J., and Rose, R. C. (1986a).Proc. Soc. Exp. Biol. Med. 181 333–337.Google Scholar
  7. Bianchi, J., and Rose, R. C. (1986b).Toxicology 40 75–82.Google Scholar
  8. Bianchi, J., Wilson, F. A., and Rose, R. C. (1986).Am. J. Physiol. 250 G461–468.Google Scholar
  9. Bigley, R., and Stankova, L. (1974).J. Exp. Med. 139 1084–1092.Google Scholar
  10. Bigley, R., Wirth, M., Layman, D., Riddle, M., and Stankova, L. (1983).Diabetes 32 545–548.Google Scholar
  11. Bode, A. M., Vanderpool, S. S., Carlson, E. C., Meyer, D. A., and Rose, R. C. (1991).Invest. Ophthalmol. Vis. Sci. 32 2266–2271.Google Scholar
  12. Bowers-Komro, D. M., and McCormick, D. B. (1991).J. Nutr. 121 57–64.Google Scholar
  13. Chatterjee, I. B., Majamder, A. K., Nandi, B. K., and Subramanian, N. (1975).Ann. N. Y. Acad. Sci. 258 24–47.Google Scholar
  14. Choi, J. L., and Rose, R. C. (1989).Am. J. Physiol. 257 C110–113.Google Scholar
  15. Chu, T. C., and Candia, O. A. (1988).Invest. Ophthalmol. Vis. Sci. 29 594–599.Google Scholar
  16. Clemetson, C. A. B. (1989). InVitamin C, CRC Press, Boca Raton, Florida, pp. 199–221.Google Scholar
  17. Delamere, N. A., Coca-Prados, M., and Aggarwal, S. (1993).Biochim. Biophys. Acta 1149 102–108.Google Scholar
  18. Diliberto, E. J., Jr., Heckman, G. D., and Daniels, A. J. (1983).J. Biol. Chem. 258 12886–12894.Google Scholar
  19. DiMattio, J. (1989a).Exp. Eye Res. 49 873–885.Google Scholar
  20. DiMattio, J. (1989b).Invest. Ophthalmol. Vis. Sci. 30 2320–2331.Google Scholar
  21. DiMattio, J. (1992a).Invest. Ophthalmol. Vis. Sci. 33 2926–2935.Google Scholar
  22. DiMattio, J. (1992b).Exp. Eye Res. 55 337–344.Google Scholar
  23. DiMattio, J., and Streitman, J. (1991).Curr. Eye Res. 10 959–965.Google Scholar
  24. Dixon, S. J., and Wilson, J. X. (1992a).J. Bone Miner. Res. 7 675–681.Google Scholar
  25. Dixon, S. J., and Wilson, J. X. (1992b).Endocrinology 130 484–489.Google Scholar
  26. Dreyer, R., and Rose, R. C. (1993).Proc. Soc. Exp. Biol. Med. 202 212–216.Google Scholar
  27. Fay, M. J., Bush, M. J., and Verlangieri, A. J. (1990).Life Sci. 46 619–624.Google Scholar
  28. Fisher, E., McLennan, S. V., Tada, H., Heffernan, S., Yue, D. K., and Turtle, J. R. (1991).Diabetes 40 371–376.Google Scholar
  29. Gould, G. W., and Holman, G. D. (1993).Biochem. J. 295 329–341.Google Scholar
  30. Halver, J. E., Smith, R. R., Tolbert, B. M., and Baker, E. M. (1975).Ann. N. Y. Acad. Sci. 258 81–102.Google Scholar
  31. Helbig, H., Korbmacher, C., Wohlfarth, J., Berweck, S., Kuhner, D., and Wiederholt, M. (1989).Am. J. Physiol. 256 C44–49.Google Scholar
  32. Iheanacho, E. N., Stocker, R., and Hunt, N. H. (1993).Biochim. Biophys. Acta 1182 15–21.Google Scholar
  33. Iioka, H., Moriyama, I., Kyuma, M., Akasaki, M., Katoh, Y., Itoh, K., Hino, K., Okamura, Y., Ninomiya, Y., Kiyozuka, Y.,et al. (1987).Nippon Sanka Fujinka Gakkai Zasshi 39 837–841.Google Scholar
  34. Ingermann, R. L., Stankova, L., and Bigley, R. H. (1986).Am. J. Physiol. 250 C637–641.Google Scholar
  35. Ingermann, R. L., Stankova, L., Bigley, R. H., and Bissonnette, J. M. (1988).J. Clin. Endocrinol. Metab. 67 389–394.Google Scholar
  36. Karasov, W. H., Darken, B. W. and Bottum, M. C. (1991).Am. J. Physiol. 260 G108–118.Google Scholar
  37. Kern, H. L., and Zolot, S. L. (1987).Curr. Eye Res. 6 885–896.Google Scholar
  38. Khatami, M. (1987).Membr. Biochem. 7 115–130.Google Scholar
  39. Khatami, M., Stramm, L. E., and Rockey, J. H. (1986).Exp. Eye Res. 43 607–615.Google Scholar
  40. King, C. G. (1973).World Rev. Nutr. Diet 18 47.Google Scholar
  41. Kipp, D. E., and Rivers, J. M. (1987).Int. J. Vitam. Nutr. Res. 57 91–97.Google Scholar
  42. Kipp, D. E., and Schwarz, R. I. (1990).J. Nutr. 120 185–189.Google Scholar
  43. Knoth, J., Viveros, O. H., and Diliberto, E. J., Jr. (1987).J. Biol. Chem. 262 14036–14041.Google Scholar
  44. Koskela, T. K., Reiss, G. R., Brubaker, R. F., and Ellefson, R. D. (1989).Google Scholar
  45. Lam, D. K., and Daniel, P. M. (1986).Q. J. Exp. Physiol. 71 483–489.Google Scholar
  46. Lam, K. W., Yu, H. S., Glickman, R. D., and Lin, T. (1993).Opthalmic. Res. 25 100–107.Google Scholar
  47. Lentner, C., ed. (1981). InGeigy Scientific Tables, CIBA-Geigy, Basel, Vol. 33, p. 132.Google Scholar
  48. Levine, M. and Pollard, H. B. (1983).FEBS-Letters 158 134–138.Google Scholar
  49. Lohmann, W., and Winzenburg, J. (1983).Z. Naturforsch. 38c 923–925.Google Scholar
  50. Maffia, M., Ahearn, G. A., Vilella, S., Zonno, V., and Storelli, C. (1993).Am. J. Physiol. 264 R1248–1253.Google Scholar
  51. Mann, G. V., and Newton, P. (1975).Ann. N. Y. Acad. Sci. 258 243–252.Google Scholar
  52. McGown, E. L., Lyons, M. F., Marini, M. A., and Zegna, A. (1990).Biochim. Biophys. Acta 1036 202–206.Google Scholar
  53. Moger, W. H. (1987).J. Androl. 8 398–402.Google Scholar
  54. Mooradian, A. D. (1987).Diabetes 36 1001–1004.Google Scholar
  55. Orringer, E. P., and Roer, M. E. S. (1979).J. Clin. Invest. 63 53–58.Google Scholar
  56. Padh, H., and Aleo, J. J. (1987).Biochim. Biophys. Acta 901 283–290.Google Scholar
  57. Padh, H., and Aleo, J. J. (1989).J. Biol. Chem. 264 6065–6069.Google Scholar
  58. Padh, H., Subramoniam, A., and Aleo, J. J. (1985).Cell. Biol. Int. Rep. 9 531–538.Google Scholar
  59. Pahl, M. V., Vaziri, N. D., Barbari, A., Saadai, B., Oveisi, F., and Seo, M. (1989).Proc. Soc. Exp. Biol. Med. 191 332–336.Google Scholar
  60. Pecoraro, R. E., and Chen, M. S. (1987).Ann. N. Y. Acad. Sci. 498 248–258.Google Scholar
  61. Peterkofsky, B., Tschank, G., and Luedke, C. (1987).Arch. Biochem. Biophys. 254 282–289.Google Scholar
  62. Raghoebar, M., Huisman, J. A., van den Berg, W. B., and van Ginneken, C. A. (1987).Life Sci. 40 499–510.Google Scholar
  63. Reil, G. H., Frombach, R., Kownatzki, R., Quante, W., and Lichtlen, P. R. (1987).Am. J. Physiol. 253 H1305–1314.Google Scholar
  64. Ringvold, A., Johnsen, H., and Blika, S. (1985).Acta Ophthalmol. Copenh. 63 277–280.Google Scholar
  65. Rose, R. C. (1985).J. Inher. Metab. Dis. 8 13–16.Google Scholar
  66. Rose, R. C. (1986a).Am. J. Physiol. 250 F627–632.Google Scholar
  67. Rose, R. C. (1986b).Metabolism 35 619–621.Google Scholar
  68. Rose, R. C. (1987).Biochim. Biophys. Acta 924 254–256.Google Scholar
  69. Rose, R. C. (1988).Biochim. Biophys. Acta 947 335–366.Google Scholar
  70. Rose, R. C. (1989).Am. J. Physiol. 256 F52–56.Google Scholar
  71. Rose, R. C., and Choi, J. L. (1990).Am. J. Physiol. 258 R1238–1241.Google Scholar
  72. Rose, R. C., Bianchi, J., and Schuette, S. A. (1985).Biochim. Biophys. Acta 821 431–436.Google Scholar
  73. Rose, R. C., Choi, J. L., and Koch, M. J. (1988).Am. J. Physiol. 254 G824–828.Google Scholar
  74. Rose, R. C., Choi, J. L., and Bode, A. M. (1992).Life Sci. 50 1543–1549.Google Scholar
  75. Sapper, H., Roth, K. D., and Lohmann, W. (1985).J. Microencapsul. 2 23–30.Google Scholar
  76. Schipfer, W., Neophytou, B., Trobisch, R., Groiss, O., and Goldenburg, H. (1985).Int. J. Biochem. 17 819–823.Google Scholar
  77. Schweinzer, E., and Goldenberg, H. (1992).Eur. J. Biochem. 206 807–812.Google Scholar
  78. Schweinzer, E., and Goldenberg, H. (1993).Eur. J. Biochem. 218 1057–1062.Google Scholar
  79. Schweinzer, E., Waeg, G., Esterbauer, H., and Goldenberg, H. (1993).FEBS Lett. 334 106–108.Google Scholar
  80. Socci, R. R., and Delamere, N. A. (1988).Exp. Eye Res. 46 853–861.Google Scholar
  81. Stahl, R. L., Farber, C. M., Liebes, L. F., and Silber, R. (1985).Cancer Res. 45 6507–6512.Google Scholar
  82. Stanek, J., Cerny, M., Kocourek, J., and Pacak, J. (1963). InThe Monosaccharides Academic Press, New York, p. 735.Google Scholar
  83. Stocker, R., Weidemann, M. J., and Hunt, N. H. (1986).Biochim. Biophys. Acta 881 391–397.Google Scholar
  84. Thorn, N. A., Christensen, B. L., Jeppesen, C., and Nielsen, F. S. (1985).Acta Physiol. Scand. 124 87–92.Google Scholar
  85. Thorn, N. A., Nielsen, F. S., Jeppesen, C. K., Christensen, B. L., and Farver, O. (1986).Acta Physiol. Scand. 128 629–638.Google Scholar
  86. Thorn, N. A., Nielsen, F. S., and Jeppesen, C. K., (1991).Acta Physiol. Scand. 141 97–106.Google Scholar
  87. Vera, J. C., Rivas, C. I., Fischbarg, J., and Golde, D. W. (1993).Nature (London) 364 79–82.Google Scholar
  88. Wang, Y. H., Dhariwal, K. R., and Levine, M. (1992).Ann. N. Y. Acad. Sci. 669 383–386.Google Scholar
  89. Washko, P. W., and Levine, M. (1992).J. Biol. Chem. 267 23568–23574.Google Scholar
  90. Washko, P. W., Rotrosen, D., and Levine, M. (1989).J. Biol. Chem. 264 18996–19002.Google Scholar
  91. Washko, P. W., Wang, Y. H., and Levine, M. (1993).J. Biol. Chem. 268 15531–15535.Google Scholar
  92. Welch, R. W., Bergsten, P., Butler, J. D., and Levine, M. (1993).Biochem. J. 294 505–510.Google Scholar
  93. Wilson, J. X. (1989).J. Neurochem. 53 1064–1071.Google Scholar
  94. Wilson, J. X. (1990).Dev. Biol. 139 292–298.Google Scholar
  95. Wilson, J. X., and Dixon, S. J. (1989a).J. Membr. Biol. 111 83–91.Google Scholar
  96. Wilson, J. X., and Dixon, S. J. (1989b).Neurochem. Res. 14 1169–1175.Google Scholar
  97. Wilson, J. X., and Jaworski, E. M. (1992).Neurochem. Res. 17 571–576.Google Scholar
  98. Wilson, J. X., Jaworski, E. M., Kulaga, A., and Dixon, S. J. (1990).Neurochem. Res. 15 1037–1043.Google Scholar
  99. Wilson, J. X., Jaworski, E. M., and Dixon, S. J. (1991).Neurochem. Res. 16 73–78.Google Scholar
  100. Zhou, A., Matsumoto, T., Farver, O., and Thorn, N. A. (1990).Acta. Physiol. Scand. 138 229–234.Google Scholar
  101. Zhou, A., Nielsen, J. H., Farver, O., and Thorn, N. A. (1991).Biochem. J. 274 739–744.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Hans Goldenberg
    • 1
  • Esther Schweinzer
    • 1
  1. 1.Department of Medical ChemistryUniversity of ViennaViennaAustria

Personalised recommendations