Journal of Bioenergetics and Biomembranes

, Volume 26, Issue 5, pp 471–485 | Cite as

Transport of calcium by mitochondria

  • Karlene K. Gunter
  • Thomas E. Gunter
Article

Abstract

The identification of intramitochondrial free calcium ([Ca2+m) as a primary metabolic mediator [see Hansford (this volume) and Gunter, T. E., Gunter, K. K., Sheu, S.-S., and Gavin, C. E. (1994)Am. J. Physiol.267, C313–C339, for reviews] has emphasized the importance of understanding the characteristics of those mechanisms that control [Ca2+]m. In this review, we attempt to update the descriptions of the mechanisms that mediate the transport of Ca2+ across the mitochondrial inner membrane, emphasizing the energetics of each mechanism. New concepts within this field are reviewed and some older concepts are discussed more completely than in earlier reviews. The mathematical forms of the membrane potential dependence and concentration dependence of the uniporter are interpolated in such a way as to display the convenience of consideringVmax to be an explicit function of the membrane potential. Recent evidence for a transient rapid conductance state of the uniporter is discussed. New evidence concerning the energetics and stoichiometries of both Na+-dependent and Na+-independent efflux mechanisms is reviewed. Explicit mathematical expressions are used to describe the energetics of the system and the kinetics of transport via each Ca2+ transport mechanism.

Key words

Mitochondria transport calcium metabolic mediator kinetics calcium pulses 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Åkerman, K. E. O. (1977a).J. Bioenerg. Biomembr. 9 65–72.Google Scholar
  2. Åkerman, K. E. O. (1977b).J. Bioenerg. Biomembr. 9 141–149.Google Scholar
  3. Åkerman, K. E. O. (1978a).Arch. Biochem. Biophys. 189 256–262.Google Scholar
  4. Åkerman, K. E. O. (1978b).FEBS Lett. 93 293–296.Google Scholar
  5. Åkerman, K. E. O., Wilkström, M. K. E., and Saris, N.-E. (1977).Biochim. Biophys. Acta 464 287–294.Google Scholar
  6. Antonio, R. V., da Silva, L. P., and Vercesi, A. E. (1991).Biochim. Biophys. Acta 1056 250–258.Google Scholar
  7. Azzone, G. F., Bragadin, M., Pozzan, T., and Dell'Antone, P. (1976).Biochim. Biophys. Acta 459 96–109.Google Scholar
  8. Baker, P. F., and Schlaepfer, W. W. (1978).J. Physiol. 276 103–125.Google Scholar
  9. Baysal, K., Brierley, G. P., Novgorodov, S., and Jung, D. W. (1991).Arch. Biochem. Biophys. 291 383–389.Google Scholar
  10. Baysal, K., Jung, D. W., Gunter, K. K., Gunter, T. E., and Brierley, G. P., (1994).Am. J. Physiol. 266 C800-C808.Google Scholar
  11. Beatrice, M. C., Stiers, D. L., and Pfeiffer, D. R. (1982).J. Biol. Chem. 257 7161–7171.Google Scholar
  12. Bernardi, P., and Azzone, G. F. (1979).Eur. J. Biochem. 102 555–562.Google Scholar
  13. Bernardi, P., and Azzone, G. F. (1982).FEBS Lett. 139 13–16.Google Scholar
  14. Berridge, M. J. (1993).Nature (London) 361 315–325.Google Scholar
  15. Berridge, M. J., and Galione, A. (1988).FASEB J. 2 3074–3082.Google Scholar
  16. Berridge, M. J. and Moreton, R. B. (1991).Curr. Biol. 1 296–297.Google Scholar
  17. Bragadin, M., Pozzan, T., and Azzone, G. F. (1979a).Biochemistry 18 5972–5978.Google Scholar
  18. Bragadin, M., Pozzan, T., and Azzone, G. F. (1979b),FEBS Lett. 104 347–351.Google Scholar
  19. Brand, M. D. (1985a).Biochem. J. 225 413–419.Google Scholar
  20. Brand, M. D. (1985b).Biochem. J. 229 161–166.Google Scholar
  21. Brand, M. D., and Murphy, M. P. (1987).Biol. Rev. Cambridge Philos. Soc. 62 141–193.Google Scholar
  22. Brand, M. D., Reynafarje, B., and Lehninger, A. L. (1976).J. Biol. Chem. 251 5670–5679.Google Scholar
  23. Brierley, G. P., and Jung, D. W. (1988).Adv. Exp. Med. Biol. 232 47–57.Google Scholar
  24. Brierley, G. P., Davis, M., and Jung, D. W. (1987).Arch. Biochem. Biophys. 253 322–332.Google Scholar
  25. Bygrave, F. L. (1977).Curr. Top. Bioenerg. 6 259–318.Google Scholar
  26. Bygrave, F. L., Reed, K. C., and Spencer, T. E. (1971).Nature New Biol. 230 89.Google Scholar
  27. Carafoli, E. (1965).Biochim. Biophys. Acta 97 99–106.Google Scholar
  28. Chance, B. (1965).J. Biol. Chem. 240 2729–2748.Google Scholar
  29. Chiesi, M., Rogg, H., Eichenberger, K., Gazzotti, P., and Carafoli, E. (1987).Biochem. Pharmacol. 36 2735–2740.Google Scholar
  30. Cobbold, P. H., and Rink, T. J. (1987).Biochem. J. 248 313–328.Google Scholar
  31. Crompton, M. (1990). InIntracellular Calcium Regulation (F. Bronner, ed.), Alan R. Liss, New York, pp. 181–209.Google Scholar
  32. Crompton, M., Capano, M., and Carafili, E. (1976a).Eur. J. Biochem. 69 453–462.Google Scholar
  33. Crompton, M., Sigel, E., Salzmann, M., and Carafoli, E. (1976b).Eur. J. Biochem. 69 429–434.Google Scholar
  34. Crompton, M., Künzi, M., and Carafoli, E. (1977).Eur. J. Biochem. 79 549–558.Google Scholar
  35. Crompton, M., Moser, R., Lüdi, H., and Carafoli, E. (1978).Eur. J. Biochem. 82 25–31.Google Scholar
  36. Crompton, M., Heid, I., and Carafoli, E. (1980).FEBS Lett. 115 257–259.Google Scholar
  37. DeLuca, H. F., and Engstrom, G. W. (1961).Proc. Natl. Acad. Sci. USA 47 1744–1750.Google Scholar
  38. Drahota, Z., Gazzotti, P., Carafoli, E., and Rossi, C. S. (1969).Arch. Biochem. Biophys. 130 267–273.Google Scholar
  39. Farber, J. L. (1981).Life Sci. 29 1289–1295.Google Scholar
  40. Fiskum, G. (1985).Cell Calcium 6 25–37.Google Scholar
  41. Fiskum, G., and Cockrell, R. S. (1978).FEBS Lett. 92 125–128.Google Scholar
  42. Fiskum, G., and Lehninger, A. L. (1979).J. Biol. Chem. 254 6236–6239.Google Scholar
  43. Fiskum, G., Reynafarje, B., and Lehninger, A. L. (1979).J. Biol. Chem. 254 6288–6295.Google Scholar
  44. Garlid, K. D. (1988).Adv. Exp. Med. Biol. 232 37–46.Google Scholar
  45. Gavin, C. E. (1991). “A role for the mitochondrion in manganese toxicity”, Ph.D. Thesis, University of Rochester, Rochester, New York.Google Scholar
  46. Gavin, C. E., Gunter, K. K., and Gunter, T. E. (1990).Biochem. J. 266 329–334.Google Scholar
  47. Gavin, C. E., Gunter, K. K., and Gunter, T. E. (1991).Anal. Biochem. 192 44–48.Google Scholar
  48. Gilon, P., Shepherd, R. M., and Henquin, J.-C. (1993).J. Biol. Chem. 268 22265–22268.Google Scholar
  49. Goldstone, T. P., and Crompton, M. (1982).Biochem. J. 204 369–371.Google Scholar
  50. Gunter, K. K., and Gunter, T. E. (1985).Biophys. J. 47, 415a.Google Scholar
  51. Gunter, K. K., Rosier, R. N., Tucker, D. A., and Gunter, T. E. (1979). InCalcium Binding Proteins and Cell Function (Wasserman, R. H., Corradino, R. P., Carafoli, E., Kretsinger, R. H., MacLennan, D. H., and Siegel, F. L., eds.), Elsevier/North-Holland, Amsterdam, London, New York, pp. 498–500.Google Scholar
  52. Gunter, K. K., Zuscik, M. J. and Gunter T. E. (1991).J. Biol. Chem. 266 21640–21648.Google Scholar
  53. Gunter, T. E., and Pfeiffer, D. R. (1990).Am. J. Physiol. 258 C755-C786.Google Scholar
  54. Gunter, T. E., and Puskin, J. S. (1972).Biophys. J. 12 625–635.Google Scholar
  55. Gunter, T. E., Rosier, R. N., Tucker, D. A., and Gunter, K. K. (1978a).Ann. NY. Acad. Sci. 307 246–247.Google Scholar
  56. Gunter, T. E., Gunter, K. K., Puskin, J. S., and Russell, P. R. (1978b).Biochemistry 17 339–345.Google Scholar
  57. Gunter, T. E., Chace, J. H., Puskin, J. S. and Gunter, K. K. (1983).Biochemistry 22 6341–6351.Google Scholar
  58. Gunter, T. E., Wingrove, D. E., Banerjee, S., and Gunter, K. K. (1988).Adv. Exp. Med. Biol. 232 1–14.Google Scholar
  59. Gunter, T.E., Zuscik, M. J., Puzas, J. E., Gunter, K. K., and Rosier, R. N. (1990).Cell Calcium 11 445–457.Google Scholar
  60. Gunter, T. E., Gunter, K. K., Sheu, S.-S., and Gavin, G. E. (1994).Am. J. Physiol. 267 C313-C339.Google Scholar
  61. Hansford, R. G. (1985).Rev. Physiol. Biochem. Pharmacol. 102 1–72.Google Scholar
  62. Hatefi, Y., Stiggall, D. L., Galante, Y., and Hanstein, W. G. (1974).Biochem. Biophys. Res. Commum. 61 313–321.Google Scholar
  63. Hayat, L. H., and Crompton, M. (1985).FEBS Lett. 182 281–286.Google Scholar
  64. Hayat, L. H., and Crompton, M. (1987).Biochem. J. 244 533–538.Google Scholar
  65. Heaton, G. M., and Nicholls, D. G. (1976).Biochem. J. 156 635–646.Google Scholar
  66. Heffron, J. J. A., and Harris, E. J. (1981).Biochem. J. 194 925–929.Google Scholar
  67. Henderson, P. J. F. (1972).Biochem. J. 127 321–333.Google Scholar
  68. Hutson, S. M. (1977).J. Biol. Chem. 252 4539–4545.Google Scholar
  69. Hutson, S. M., Pfeiffer, D. R., and Lardy, H. A. (1976).J. Biol. Chem. 251 5251–5258.Google Scholar
  70. Igbavboa, U., and Pfeiffer, D. R. (1988).J. Biol. Chem. 263 1405–1412.Google Scholar
  71. Igbavboa, U., and Pfeiffer, D. R. (1991a).Biochim. Biophys. Acta 1059 339–347.Google Scholar
  72. Igbavboa, U., and Pfeiffer, D. R. (1991b).J. Biol. Chem. 266 4283–4287.Google Scholar
  73. Jensen, B. D., Gunter, K. K., and Gunter, T. E. (1986).Arch. Biochem. Biophys. 248 305–323.Google Scholar
  74. Jurkowitz, M. S., Geisbuhler, T., Jung, D. W., and Brierley, G. P. (1983a).Arch. Biochem. Biophys. 223 120–128.Google Scholar
  75. Jurkowitz, M. S., Altschuld, R. A., Brierley, G. P., and Cragoe, E. J., Jr., (1983b).FEBS Lett. 162 262–265.Google Scholar
  76. Kapoor, S. C., van Rossum, G. D. V., O'Neill, K. J., and Mercorella, I. (1985).Biochem. Pharmacol. 34 1439–1448.Google Scholar
  77. Kapùs, A., Szászi, K., Káldi, K., Ligeti, E., and Fonyó, A. (1991).FEBS Lett. 282 61–64.Google Scholar
  78. Kröner, H. (1986a).Arch. Biochem. Biophys. 251 525–535.Google Scholar
  79. Kröner, H. (1986b).Biol. Chem. Hoppe-Seyler 367 483–493.Google Scholar
  80. Kröner, H. (1988).Arch. Biochem. Biophys. 267 205–210.Google Scholar
  81. Lehninger, A. L. (1972). InMolecular Basis of Electron Transport (Schultz, J., and Cameron, B. F., eds.), Academic Press, New York, London, pp. 133–151.Google Scholar
  82. Lehninger, A. L., Carafoli, E., and Rossi, C. S. (1967).Adv. Enzymol. 29 259–320.Google Scholar
  83. Leikin, Yu. N., and Gonsalves, M. P. P. (1986).Dokl. Akad. Nauk SSSR 290 1011–1014.Google Scholar
  84. Leisey, J. R., Grotyohann, L. W., Scott, D. A., and Scaduto, R. C. Jr., (1993).Am. J. Physiol. 265 H1203-H1208.Google Scholar
  85. Lenzen, S., Münster, W., and Rustenbeck, I. (1992).Biochem. J. 286 597–602.Google Scholar
  86. Li, W., Shariat-Madar, Z., Powers, M., Sun, X., Lane, R. D., and Garlid, K. D. (1992).J. Biol. Chem. 267 17983–17989.Google Scholar
  87. Ligeti, E., and Lukács, G. L. (1984).J. Bioenerg. Biomembr. 16 101–113.Google Scholar
  88. Lötscher, H.-R., Winterhalter, K. H., Carafoli, E., and Richter, C. (1980).J. Biol. Chem. 255 9325–9330.Google Scholar
  89. Luft, J. H. (1971).Anat. Rec. 171 347–368.Google Scholar
  90. Lukács, G. L., and Fonyó, A. (1985).Biochim. Biophys. Acta 809 160–166.Google Scholar
  91. Lukács, G. L., and Fonyó, A. (1986).Biochim. Biophys. Acta 858 125–134.Google Scholar
  92. McCormack, J. G., and Denton, R. M. (1993).Biochem. Soc. Trans. 21 793–798.Google Scholar
  93. McMillin-Wood, J., Wolkowicz, P. E., Chu, A., Tate, C. A., Goldstein, M. A., and Entman, M. L. (1980).Biochim. Biophys. Acta 591 251–265.Google Scholar
  94. Meissner, G., and Henderson, J. S. (1987).J. Biol. Chem. 262 3065–3073.Google Scholar
  95. Mela, L. (1969).Biochemistry 8 2481–2486.Google Scholar
  96. Mitchell, P. (1966a).Biol. Rev. Cambridge Philos. Soc. 41 445–502.Google Scholar
  97. Mitchell, P. (1966b).Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation. Glynn Research, Bodmin, England.Google Scholar
  98. Murphy, A. N., and Fiskum, G. (1988).Adv. Exp. Med. Biol. 232 139–150.Google Scholar
  99. Nicchitta, C. V., and Williamson, J. R. (1984).J. Biol. Chem. 259 12978–12983.Google Scholar
  100. Petersen, C. C. H., Petersen, O. H. and Berridge, M. J. (1993).J. Biol. Chem. 268 22262–22264.Google Scholar
  101. Pfeiffer, D. R., Hutson, S. M., Kauffman, R. F., and Lardy, H. A. (1976).Biochemistry 15 2690–2697.Google Scholar
  102. Pfeiffer, D. R., Palmer, J. W., Beatrice, M. C., and Stiers, D. L. (1983). InThe Biochemistry of Metabolic Processes (Lennon, D. F. L., Stratman, F. W., and Zahlten, R. N., eds.), Elsevier/North-Holland, New York, pp. 67–80.Google Scholar
  103. Puskin, J. S., Gunter, T. E., Gunter, K. K. and Russell, P. R. (1976).Biochemistry 15 3834–3842.Google Scholar
  104. Reed, K. C., and Bygrave, F. L. (1974a).Biochem. J. 138 239–252.Google Scholar
  105. Reed, K. C., and Bygrave, F. L. (1974b).Biochem. J. 140 143–155.Google Scholar
  106. Reed, K. C., and Bygave, F. L. (1975).Eur. J. Biochem. 55 497–504.Google Scholar
  107. Rizzuto, R., Bernardi, P., Favaron, M., and Azzone, G. F. (1987).Biochem. J. 246 271–277.Google Scholar
  108. Romslo, I., and Flatmark, T. (1973).Biochim. Biophys. Acta 325 38–46.Google Scholar
  109. Rosier, R. N., Tucker, D. A., Meerdink, S., Jain, I., and Gunter, T. E. (1981).Arch. Biochem. Biophys. 210 549–564.Google Scholar
  110. Rottenberg, H., and Marbach, M. (1990a).Biochim. Biophys. Acta 1016 77–86.Google Scholar
  111. Rottenberg, H., and Marbach, M. (1990b).FEBS Lett. 274 65–68.Google Scholar
  112. Rottenberg, H., and Marbach, M. (1991).Life Sci. 48 987–994.Google Scholar
  113. Saris, N.-E. L. (1987).Acta Chem. Scand. B41 79–82.Google Scholar
  114. Saris, N.-E. L., and Bernardi, P. (1983).Biochim. Biophys. Acta 725 19–24.Google Scholar
  115. Scarpa, A., and Azzone, G. F. (1970).Eur. J. Biochem. 12 328–335.Google Scholar
  116. Scarpa, A., and Graziotti, P. (1973).J. Gen. Physiol. 62 756–772.Google Scholar
  117. Schellenberg, G. D., Anderson, L., Cragoe, E. J., Jr., and Swanson, P. D. (1985).Cell Calcium 6 431–447.Google Scholar
  118. Selwyn, M. J., Dawson, A. P., and Dunnett, S. J. (1970).FEBS Lett. 10 1–5.Google Scholar
  119. Senior, A. E. (1988).Physiol. Rev. 68 177–231.Google Scholar
  120. Sheu, S.-S., and Blaustein, M. P. (1992). InThe Heart and Cardiovascular System, Scientific Foundations Vol. 2 (Fozzard, H. A., Haber, E., Jennings, R. B., Katz, A. M., and Morgan, H. E., eds.), Raven Press, New York, pp. 903–943.Google Scholar
  121. Sordahl, L. A., LaBelle, E. F., and Rex, K. A. (1984).Am. J. Physiol. 246 C172-C176.Google Scholar
  122. Sparagna, G. C., Gunter, K. K., and Gunter, T. E. (1994).Anal. Biochem. 219 96–103.Google Scholar
  123. Tashmukhamedov, B. A., Gazelgans, A. I., Mamatkulov, Kh., and Makhmudova, E. M. (1972).FEBS Lett. 28 239–245.Google Scholar
  124. Vainio, H., Mela, L., and Chance, B. (1970).Eur. J. Biochem. 12 387–391.Google Scholar
  125. Vasington, F. D., Gazzotti, P., Tiozzo, R., and Carafoli, E. (1972).Biochim. Biophys. Acta 256 43–54.Google Scholar
  126. Vercesi, A., Reynafarje, B., and Lehninger, A. L. (1978).J. Biol. Chem. 253 6379–6385.Google Scholar
  127. Vinogradov, A., and Scarpa, A. (1973).J. Biol. Chem. 248 5527–5531.Google Scholar
  128. Wingrove, D. E., and Gunter, T. E., (1986a).J. Biol. Chem. 261 15159–15165.Google Scholar
  129. Wingrove, D. E., and Gunter, T. E. (1986b).J. Biol. Chem. 261 15166–15171.Google Scholar
  130. Wingrove, D. E., Amatruda, J. M., and Gunter, T. E. (1984).J. Biol. Chem. 259 9390–9394.Google Scholar
  131. Wolkowicz, P. E., Michael, L. H., Lewis, R. M., and McMillin-Wood, J. (1983).Am. J. Physiol. 244 H644-H651.Google Scholar
  132. Wyssbrod, H. R., Scott, W. N., Brodsky, W. A., and Schwarz, I. L. (1971). InHandbook of Neurochemistry, Vol. 5,Metabolic Turnover in the Nervous System, Part B (Lajtha, A., ed.), Plenum Press, New York, London, pp. 683–819.Google Scholar
  133. Ying, W.-L., Emerson, J., Clarke, M. J., and Sanadi, D. R. (1991).Biochemistry 30 4949–4952.Google Scholar
  134. Zoccarato, F., and Nicholls, D. G. (1981).FEBS Lett. 128 275–277.Google Scholar
  135. Zoccarato, F., and Nicholls, D. (1982).Eur. J. Biochem. 127 333–338.Google Scholar
  136. Zuscik, M. J. (1993). “Parathyroid hormone activation of signalling pathways in growth plate chondrocytes”, Ph.D. thesis, University of Rochester, Rochester, New York.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Karlene K. Gunter
    • 1
  • Thomas E. Gunter
    • 1
  1. 1.Department of BiophysicsUniversity of Rochester Medical SchoolRochester

Personalised recommendations