Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 21, Issue 6, pp 705–716 | Cite as

Na+-driven bacterial flagellar motors

  • Yasuo Imae
  • Tatsuo Atsumi
Mini-Review

Abstract

Bacterial flagellar motors are the reversible rotary engine which propels the cell by rotating a helical flagellar filament as a screw propeller. The motors are embedded in the cytoplasmic membrane, and the energy for rotation is supplied by the electrochemical potential of specific ions across the membrane. Thus, the analysis of motor rotation at the molecular level is linked to an understanding of how the living system converts chemical energy into mechanical work. Based on the coupling ions, the motors are divided into two types; one is the H+-driven type found in neutrophiles such asBacillus subtilis andEscherichia coli and the other is the Na+-driven type found in alkalophilicBacillus and marineVibrio. In this review, we summarize the current status of research on the rotation mechanism of the Na+-driven flagellar motors, which introduces several new aspects in the analysis.

Key Words

Bacterial flagellar motor Na+-driven motor alkalophilicBacillus marineVibrio amiloride sodium motive force 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asher, C., Cragoe, E. J., Jr., and Garty, H. (1987).Biochim. Biophys. Acta 778, 129–138.Google Scholar
  2. Benos, D. J. (1982).Am. J. Physiol. 242, C131-C145.Google Scholar
  3. Booth, I. R. (1985).Microbiol. Rev. 49, 359–378.Google Scholar
  4. Chernyak, B. V., Dibrov, P. A., Glagolev, A. N., Yu, M., and Skulachev, V. P. (1983).FEBS Lett. 164, 38–42.Google Scholar
  5. Dibrov, P. A., Kostyrko, V. A., Lazarova, R. L., Skulachev, V. P., and Smirnova, I. A. (1986).Biochim. Biophys. Acta 850, 449–457.Google Scholar
  6. Eisenbach, M., and Adler, J. (1981).J. Biol. Chem. 256, 8807–8814.Google Scholar
  7. Glagolev, A. N., and Skulachev, V. P. (1978).Nature (London) 272, 280–282.Google Scholar
  8. Guffanti, A. A., and Eisenstein, H. C. (1983).J. Gen. Microbiol. 129, 3239–3242.Google Scholar
  9. Hirota, N., and Imae, Y. (1983).J. Biol. Chem. 258, 10577–10581.Google Scholar
  10. Hirota, N., Kitada, M., and Imae, Y. (1981).FEBS Lett. 132, 278–280.Google Scholar
  11. Horikoshi, K., and Akiba, T. (1982). InAlkalophilic Microorganisms, Springer-Verlag, New York.Google Scholar
  12. Imae, Y., Matsukura, H., and Kobayasi, S. (1986).Methods Enzymol. 125, 582–592.Google Scholar
  13. Khan, S., and Macnab, R. M. (1980).J. Mol. Biol. 138, 599–614.Google Scholar
  14. Khan, S., and Berg, H. C. (1983).Cell 32, 913–919.Google Scholar
  15. Kitada, M., Guffanti, A. A., and Krulwich, T. A. (1982).J. Bacteriol. 152, 1096–1104.Google Scholar
  16. Koyama, N., Takinishi, H., and Nosoh, Y. (1983).FEMS Microbiol. Lett. 16, 213–216.Google Scholar
  17. Krulwich, T. A. (1983).Biochim. Biophys. Acta 726, 245–264.Google Scholar
  18. Krulwich, T. A. (1986).J. Membr. Biol. 89, 113–125.Google Scholar
  19. LaBelle, E. F., Woodward, P. L., and Cragoe, E. J., Jr. (1984).Biochim. Biophys. Acta 778, 129–158.Google Scholar
  20. Läuger, P. (1988).Biophys. J. 53, 53–65.Google Scholar
  21. Lowe, G., Meister, M., and Berg, H. C. (1987).Nature (London) 325, 637–640.Google Scholar
  22. Macnab, R. M. (1987). InEscherichia coli and Salmonella typhimurium (Neidhardt, F. C., ed.), Vol. 2, American Society for Microbiology, Washington, D.C., pp. 732–759.Google Scholar
  23. Manson, M. D., Tedesco, P., Berg, H. C., Harold, F. M., and Van Der Drift, C. (1977).Proc. Natl. Acad. Sci. USA 74, 3060–3064.Google Scholar
  24. Manson, M. D., Tedesco, P. M., and Berg, H. C. (1980).J. Mol. Biol. 138, 541–561.Google Scholar
  25. Matsukura, H., and Imae, Y. (1987).Biochim. Biophys. Acta 904, 301–308.Google Scholar
  26. Matsuura, S., Shioi, J., and Imae, Y. (1977).FEBS Lett. 82, 187–190.Google Scholar
  27. Matsuura, S., Shioi, J., Imae, Y., and Iida, S. (1979).J. Bacteriol. 140, 28–36.Google Scholar
  28. Oosawa, F., and Hayashi, S. (1986).Adv. Biophys. 22, 151–183.Google Scholar
  29. Prince, R. C. (1988).Trends Biochem. Sci. 13, 76–77.Google Scholar
  30. Shioi, J., Matsuura, S., and Imae, Y. (1980).J. Bacteriol. 144, 891–897.Google Scholar
  31. Silverman, M., and Simon, M. I. (1974).Nature (London) 249, 73–74.Google Scholar
  32. Sugiyama, S., Matsukura, H., and Imae, Y. (1985).FEBS Lett. 182, 265–268.Google Scholar
  33. Sugiyama, S., Matsukura, H., Koyama, N., Nosoh, Y., and Imae, Y. (1986).Biochim. Biophys. Acta 852, 38–45.Google Scholar
  34. Sugiyama, S., and Cragoe, E. J., Jr., and Imae, Y. (1988).J. Biol. Chem. 263, 8215–8219.Google Scholar
  35. Tokuda, H., and Unemoto, T. (1982).J. Biol. Chem. 257, 10007–10014.Google Scholar
  36. Tokuda, H., Asano, M., Shimamura, Y., Unemoto, T., Sugiyama, S., and Imae, Y. (1988).J. Biochem. 103, 650–655.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Yasuo Imae
    • 1
  • Tatsuo Atsumi
    • 1
  1. 1.Department of Molecular Biology, Faculty of ScienceNagoya UniversityNagoyaJapan

Personalised recommendations