Journal of Bioenergetics and Biomembranes

, Volume 21, Issue 6, pp 679–692 | Cite as

Sodium-translocating adenosine triphosphatase inStreptococcus faecalis

  • Yoshimi Kakinuma
  • Kazuei Igarashi


Sodium-transloating ATPase in the fermentative bacteriumStreptococcus faecalis exchanges sodium for potassium ions. Sodium ions stimulate its activity, but K+ ions have no significant effect at present. Although the molecular nature of the sodium ATPase is not clear, the enzyme is distinct from other ion-motive ATPases (E1E2 type and F1F0 type) as judged by its resistance to vanadate as well as dicyclohexylcarbodiimde. The sodium ATPase is induced when cells are grown on media rich in sodium, particularly under conditions that limit the generation of a proton potential or block the constitutive sodium/proton antiporter, indicating that an increase in the cytoplasmic sodium level serves as the signal. The enzyme is not induced in response to K+ deprivation. The sodium ATPase may have evolved to cope with a sodium-rich environment under conditions that limit the magnitude of the proton potential.

Key Words

Na+-ATPase inducibility Na+/H+ antiporter proton potential 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bakker, E. P., and Harold, F. M. (1980).J. Biol. Chem. 255, 433–440.Google Scholar
  2. Benyoucef, M., Rigaud, J-L., and Leblanc, G. (1982).Biochem. J. 208, 539–547.Google Scholar
  3. Carper, S. W., and Lancaster, J. R. (1986).FEBS Lett. 200, 177–180.Google Scholar
  4. Deibel, R. H., and Seeley, H. W., Jr. (1974).Genus I. Streptococcus, InBergey's Manual of Determinative Bacteriology (Buchanan, R. E., and Gibbons, N. E., eds.), 8th edn., Williams and Wilkins, Baltimore, p. 490.Google Scholar
  5. Dibrov, P. A., Skulachev, V. P., Sokolov, M. V., and Verkhovskaya, M. L. (1988).FEBS Lett. 233, 355–358.Google Scholar
  6. Fürst, P., and Solioz, M. (1986).J. Biol. Chem. 251, 4302–4308.Google Scholar
  7. Harold, F. M. (1986).The Vital Force: A Study of Bioenergetics, Freeman, New York.Google Scholar
  8. Harold, F. M., and Papineau, D. (1972).J. Membr. Biol. 8, 45–62.Google Scholar
  9. Harold, F. M., and Altendorf, K. (1974).Curr. Top. Membr. Transport 5, 1–50.Google Scholar
  10. Harold, F. M., and Kakinuma, Y. (1985).Ann. N.Y. Acad. Sci. 456, 375–383.Google Scholar
  11. Harold, F. M., Baarda, J. R., and Pavlasova, E. (1970).J. Bacteriol. 101, 152–157.Google Scholar
  12. Heefner, D. L. (1982).Mol. Cell. Biochem. 44, 81–106.Google Scholar
  13. Heefner, D. L., and Harold, F. M. (1980).J. Biol. Chem. 255, 11396–11402.Google Scholar
  14. Heefner, D. L., and Harold, F. M. (1982).Proc. Natl. Acad. Sci. USA 79, 2798–2802.Google Scholar
  15. Heefner, D. L., Kobayashi, H., and Harold, F. M. (1980).J. Biol. Chem. 255, 11403–11407.Google Scholar
  16. Jinks, D. C., Silvius, J. R., and McElhaney, R. N. (1978).J. Bacteriol. 136, 1027–1036.Google Scholar
  17. Kakinuma, Y. (1987a).J. Bacteriol. 169, 3886–3890.Google Scholar
  18. Kakinuma, Y. (1987b).J. Bacteriol. 169, 4403–4405.Google Scholar
  19. Kakinuma, Y., and Harold, F. M. (1985).J. Biol. Chem. 260, 2086–2091.Google Scholar
  20. Kakinuma, Y., and Igarashi, K. (1988).J. Biol. Chem. 263, 14166–14170.Google Scholar
  21. Kashket, E. R. (1979).J. Biol. Chem. 254, 8129–8131.Google Scholar
  22. Kashket, E. R., and Barker, S. L. (1977).J. Bacteriol. 130, 1017–1023.Google Scholar
  23. Kinoshita, N., Unemoto, T., and Kobayashi, H. (1984).J. Bacteriol. 158, 844–848.Google Scholar
  24. Kobayashi, H. (1982).J. Bacteriol. 150, 506–511.Google Scholar
  25. Kobayashi, H., and Kakinuma, Y. (1985). Cation Transport ATPase in Bacteria. InProgress in Bioenergetics in Japan. pp. 65–66.Google Scholar
  26. Krulwich, T. A. (1983).Biochim. Biophys. Acta 726, 245–264.Google Scholar
  27. Lanyi, J. K. (1979).Biochim. Biophys. Acta 559, 377–398.Google Scholar
  28. Laubinger, W., and Dimroth, P. (1987).Eur. J. Biochem. 168, 475–480.Google Scholar
  29. Laubinger, W., and Dimroth, P. (1988).Biochemistry 27, 7531–7537.Google Scholar
  30. Lewis, R. N. A. H., and McElhaney, R. N. (1983).Biochem. Biophys. Acta 735, 113–122.Google Scholar
  31. Mitchell, P. (1976).Biochem. Soc. Trans. 4, 399–430.Google Scholar
  32. Russell, J. B., Strobel, H. J., Driessen, A. M., and Konings, W. N. (1988).J. Bacteriol. 170, 3531–3536.Google Scholar
  33. Skulachev, V. P. (1985).Eur. J. Biochem. 151, 199–208.Google Scholar
  34. Skulachev, V. P. (1988).Membrane Bioenergetics, Springer-Verlag, Berlin, Heidelberg.Google Scholar
  35. West, I. C., and Mitchell, P. (1974).Biochem. J. 144, 87–90.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Yoshimi Kakinuma
    • 1
  • Kazuei Igarashi
    • 1
  1. 1.Faculty of Pharmaceutical SciencesChiba UniversityChibaJapan

Personalised recommendations