General Relativity and Gravitation

, Volume 8, Issue 7, pp 515–524 | Cite as

A test theory of special relativity: II. First order tests

  • Reza Mansouri
  • Roman U. Sexl
Research Articles


First-order tests of special relativity are based on a comparison of clocks synchronized with the help of slow clock transport with those synchronized by the Einstein procedure. This comparison enables the measurement of the one-way velocity of light and is equivalent to a measurement of the time dilatation factor. The accuracy of present measurements is of the order 10−7, yielding an upper limit of 3 cm/sec for the ether drift.


Ether Differential Geometry Special Relativity Test Theory Present Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Laub, J. (1910).Jahrb. Radioakt. Elektron.,7, 405.Google Scholar
  2. 2.
    Schaffner, K. F. (1972).Nineteenth Century Ether Theories, Pergamon Press, New York.Google Scholar
  3. 3.
    Stokes, G. G. (1845).Phil. Mag.,27, 9; (1846).28, 76; (1846).29, 6.Google Scholar
  4. 4.
    Lorentz, H. A. (1896).Arch. Neerl,21, 103.Google Scholar
  5. 5.
    Whittaker, E. (1951).A History of the Theories of Aether and Electricity, Thomas Nelson and Sons Ltd, London, Vol. I, p. 387.Google Scholar
  6. 6.
    Hertz, H. (1890).Ann. Phys. Leipzig,41, 369.Google Scholar
  7. 7.
    Bradley, J. (1729).Phil. Trans. R. Soc. London,35, 637.Google Scholar
  8. 8.
    Fizeau, H. (1857).Ann. Chim. Phys.,57, 385.Google Scholar
  9. 9.
    Fresnel, A. (1818).Ann. Chim.,9, 57.Google Scholar
  10. 10.
    Lorentz, H. A. (1895).Versuch einer Theorie der elektrischen und optischen Erscheinungen in bewegten Körpern, Leiden 1895; (1909).Theory of Electrons, Leipzig.Google Scholar
  11. 11.
    Klinkerfues, J. (1870).Nachr. Kgl. Ges. Wiss. Göttingen, 226.Google Scholar
  12. 12.
    Mascart, E. (1812).Ann. Sci. Ecole Norm. Sup.,1, 157; (1874)3, 363.Google Scholar
  13. 13.
    Veltmann, W. (1870).Astron. Nachr.,75, 145; (1870).76, 129; (1873).Poggendorff's Ann.,150, 497; Potier, A. (1874).J. Phys. (Paris),3, 201. See Newburgh, R. and Costa de Beauregard, O. (1975).Am. J. Phys.,43, 528 for an analysis of the importance of these papers.Google Scholar
  14. 14.
    Maxwell, J. C. (1880).Proc. R. Soc. London,30, 108.Google Scholar
  15. 15.
    Lecat, M. (1924).Bibliographie de la Relativité, Brüssel.Google Scholar
  16. 16.
    Møller, C. (1957).Suppl. Nuovo Cimento,6, 381; (1960).Proc. R. Soc. A,270, 306.Google Scholar
  17. 17.
    Ruderfer, M. (1960).Phys. Rev. Lett.,5, 191; (1961).7, 361 (erratum); (1960).Proc. IRE,48, 1661.Google Scholar
  18. 18.
    Weinberger, H., and Mossel, M. (1971).Am. J. Phys.,39, 606.Google Scholar
  19. 19.
    Stedman, G. E. (1973).Am. J. Phys.,40, 782; (1973).41, 1300.Google Scholar
  20. 20.
    Erlicson, H. (1973).Am. J. Phys.,41, 1298.Google Scholar
  21. 21.
    Silvertooth, E. W. (1972).J. Opt. Soc. Am.,62, 1330.Google Scholar
  22. 22.
    Mansouri, R., and Sexl, R. U. (1977).Gen. Rel. Grav.,8, 497. This paper will be cited as I and equations from it as, for example, (I.1.1).Google Scholar
  23. 23.
    Erlicson, H. (1973).Am. J. Phys.,41, 1068.Google Scholar
  24. 24.
    Strakhovskii, G. M., and Uspenskii, A. V. (1966).Sov. Phys. Usp.,8, 505.Google Scholar
  25. 25.
    Römer, O. (1666–99).Mem. Acad.,10, 575.Google Scholar
  26. 26.
    Born, M. (1969).Die Relativitätstheorie Einsteins, Berlin.Google Scholar
  27. 27.
    Reichenbach, H. (1925).Z. Phys.,33, 628.Google Scholar
  28. 28.
    Karlov, L. (1970).Austral. J. Phys.,23, 243.Google Scholar
  29. 29.
    Conklin, E. K. (1969).Nature,222, 971.Google Scholar
  30. 30.
    Rapier, P. M. (1961).Proc. IRE,49, 1322.Google Scholar
  31. 31.
    Becker, G. (1975).Kleinheubacher Berichte,18, 45.Google Scholar
  32. 32.
    Becker, G. Physikalisch-Technische Bundesanstalt Braunschweig (private communication).Google Scholar
  33. 33.
    Cedarholm, J. P., Bland, G. F., Havens, B. L., and Townes, C. H. (1958).Phys. Rev. Lett.,1, 342; Cedarholm, J. P., Townes, C. H. (1959).Nature,189, 1350.Google Scholar
  34. 34.
    Champeney, D. C., and Moon, P. B. (1961).Proc. Phys. Soc.,77, 350.Google Scholar
  35. 35.
    Champeney, D. C., Isaak, G. R., and Khan, A. M. (1963).Phys. Lett.,7, 241.Google Scholar
  36. 36.
    Turner, K. C., and Hill, H. A. (1964).Phys. Rev.,134, B252.Google Scholar
  37. 37.
    Isaak, G. R. (1970).Phys. Bull., 255.Google Scholar
  38. 38.
    Cialdea, R. (1972).Nuovo Cimento Lett.,4, 821.Google Scholar
  39. 39.
    Carnaham, C. W. (1962).Proc. IRE,50, 1976.Google Scholar
  40. 40.
    Tyapkin, A. A. (1973).Nuovo Cimento Lett.,7, 760.Google Scholar

Copyright information

© Plenum Publishing Corp. 1977

Authors and Affiliations

  • Reza Mansouri
    • 1
  • Roman U. Sexl
    • 1
  1. 1.Institut für Theoretische Physik der Universität WienÖsterreich

Personalised recommendations