Advertisement

General Relativity and Gravitation

, Volume 8, Issue 7, pp 497–513 | Cite as

A test theory of special relativity: I. Simultaneity and clock synchronization

  • Reza Mansouri
  • Roman U. Sexl
Research Articles

Abstract

The role of convention in various definitions of clock synchronization and simultaneity is investigated. We show that two principal methods of synchronization can be considered: system internal and system external synchronization. Synchronization by the Einstein procedure and by slow clock transport turn out to be equivalent if and only if the time dilatation factor is given by the Einstein result (1−v2)1/2. An ether theory is constructed that maintains absolute simultaneity and is kinematically equivalent to special relativity.

Keywords

Ether Differential Geometry Special Relativity Ether Theory Test Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thorne, K. S., Lee, D. L., and Lightman, A. P. (1973).Phys. Rev. D,7, 3563.Google Scholar
  2. 2.
    Will, C. M. (1974).Proc. Int. Sch. Phys. “Enrico Fermi”,LVI.Google Scholar
  3. 3.
    Frank, P., and Rothe, H. (1911).Ann. Phys. Leipzig,34, 825.Google Scholar
  4. 4.
    Berzi, V., and Gorini, V. (1969).J. Math. Phys.,10, 1518.Google Scholar
  5. 5.
    Michelson, A. A. (1904).Phil. Mag.,8, 716.Google Scholar
  6. 6.
    Schweizer, G. (1904).Phys. Z.,25, 809.Google Scholar
  7. 7.
    Wien, W. (1904).Phys. Z.,19, 585, 603.Google Scholar
  8. 8.
    Andrade, J. (1903).Arch. Sci.,16, 611.Google Scholar
  9. 9.
    Brillouin, M. (1905).Compt. Rend.,140, 1674.Google Scholar
  10. 10.(a)
    H. Poincaré, (1898).Rev. Metaphys. Morales,6, 1Google Scholar
  11. 10.(b)
    H. Poincaré (1905). InCongress of Arts and Science, Vol. I:Philosophy and Mathematics, ed. Rogers, J. (George Bruce Halsted, transl.) Boston: Houghton, Mifflin and Co. Reprinted in (1968).Relativity Theory, Its Origin and Impact on Modern Thought, ed. Williams, L. P., John Wiley & Sons, Inc., New YorkGoogle Scholar
  12. 10.(c)
    H. Poincaré (1914).Science and Method, Dover Publications, New York; see alsoGoogle Scholar
  13. 10.(d)
    Goldberg, S. (1967).Am. J. Phys.,35, 934Google Scholar
  14. 10.(e)
    Schwartz, H. M. (1971).Am. J. Phys.,39, 1287; (1972).40, 862Google Scholar
  15. 10.(f)
    Miller, A. J. (1973).Archiv for History of Exact Sciences,10, 207.Google Scholar
  16. 11.
    Einstein, A. (1905).Ann. Phys. Leipzig,17, 891.Google Scholar
  17. 12.
    Ellis, B., and Bowman, P. (1967).Phil. Sci.,34, 116.Google Scholar
  18. 13.
    A panel discussion of simultaneity by slow clock transport in the special and general theories of relativity (1969).Phil. Sci.,36, No. 1.Google Scholar
  19. 14.
    Eddington, A. S. (1924).The Mathematical Theory of Relativity, Cambridge University Press, Cambridge, England.Google Scholar
  20. 15.
    Mandelshtam, L. C. (1950).Polnae sobranie trudov (complete collected works) Vol. S, Izd. AN SSSR, Moscow.Google Scholar
  21. 16.
    Reichenbach, H. (1958).The Philosophy of Space and Time, Dover Publications, New York.Google Scholar
  22. 17.
    Grünbaum, A. (1973).Philosophical Problems of Space and Time, Reidel Publishing Company, Dordrecht/Boston.Google Scholar
  23. 18.
    Molchanov, Yu. B. (1969).Vremya v Klassicheskoi i relyativistekoi fizike (Time in Classical and Relativistic Physics), Znanie, Moscow.Google Scholar
  24. 19.
    Ives, H. E. (1948).J. Opt. Soc. Am.,38, 879; (1949).39, 757; (1950).40, 185.Google Scholar
  25. 20.
    Møller, C. (1957).Suppl. Nuovo Cimento,6, 381.Google Scholar
  26. 21.
    Winnie, J. A. (1970).Phil. Sci.,37, 81, 223.Google Scholar
  27. 22.
    See Mansouri, R. and Sexl, R. U. (1977).Gen. Rel. Grav.,8, 515.Google Scholar
  28. 23.
    Arzelies, H. (1966).Relativistic Kinematics, Pergamon Press, New York.Google Scholar
  29. 24.
    Eagle, A. (1939).Phil. Mag.,28, 592.Google Scholar
  30. 25.
    Ives, H. E. (1939).J. Opt. Soc. Am.,29, 472.Google Scholar
  31. 26.
    Feenberg, E. (1974).Found. Phys.,4, 121.Google Scholar
  32. 27.
    Süssmann, G. (1969).Z. Naturforsch.,24a, 495.Google Scholar
  33. 28.
    This transformation has also been considered by Tangherlini, F. R. (1961).Suppl. Nuovo Cimento,20, 1.Google Scholar
  34. 29.
    Ruderfer, M. (1960).Phys. Rev. Lett.,5, 191; (1960).Proc. IRE,48, 1661; (1962).50, 325.Google Scholar
  35. 30.
    Erlicson, H. (1973).Am. J. Phys.,41, 1068.Google Scholar
  36. 31.
    Mansouri, R. and Sexl, R. U. (1977). Paper III, to be published inGen. Rel. Grav. Google Scholar

Copyright information

© Plenum Publishing Corp. 1977

Authors and Affiliations

  • Reza Mansouri
    • 1
    • 2
  • Roman U. Sexl
    • 1
    • 2
  1. 1.Institut für Theoretische Physik der Universität WienWienAustria
  2. 2.Institut für Weltraumforschung der Österreichischen Akademie der WissenschaftenWienAustria

Personalised recommendations