Advertisement

General Relativity and Gravitation

, Volume 17, Issue 8, pp 747–760 | Cite as

On the tetrad theory of gravity

  • F. Müller-Hoissen
  • J. Nitsch
Research Articles

Abstract

After reviewing problems which appear in the theory of teleparallelism (tetrad theory) based on a Lagrangian quadratic in the torsion, the possibility of adding higher-order terms is discussed. For a “test Lagrangian,”O(3)-symmetric vacuum solutions and spatially homogeneous and isotropic solutions are found. The latter contain nonsingular cosmological models.

Keywords

Differential Geometry Cosmological Model Vacuum Solution Isotropic Solution Symmetric Vacuum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Einstein, A. (1928).Sitzungsber. Preuss. Akad. Wiss., Phys.-Math. Klasse, 224.Google Scholar
  2. 2.
    Debever, R. (ed.) (1979).Elie Cartan-Albert Einstein, Lettres sur le Parallélisme Absolu 1929–1932 (Académie Royale de Belgique and Princeton University Press).Google Scholar
  3. 3.
    Salzer, H. E. (1974).Arch. Hist. Exact Sci.,12, 89.Google Scholar
  4. 4.
    Møller, C. (1961).Mat. Fys. Skr. Dan. Vid. Selsk.,1, No. 10.Google Scholar
  5. 5.
    Møller, C. (1978).Mat. Fys. Medd. Dan. Vid. Selsk.,39, No. 13.Google Scholar
  6. 6.
    Møller, C. (1979). InEinstein-Centenarium 1979, H.-J. Treder, ed. (Akademie-Verlag, Berlin), p. 84.Google Scholar
  7. 7.
    Pellegrini, C., and Plebanski, J. (1963).Mat. Fys. Skr. Dan. Vid. Selsk.,2, No. 4.Google Scholar
  8. 8.
    Hayashi, K., and Shirafuji, T. (1979).Phys. Rev. D,19, 3524.Google Scholar
  9. 9.
    Nitsch, J. (1980). InCosmology and Gravitation, P. G. Bergmann and V. de Sabbata, eds. (Plenum Press, New York), p. 63.Google Scholar
  10. 10.
    Müller-Hoissen, F., and Nitsch, J. (1983).Phys. Rev. D,28, 718.Google Scholar
  11. 11.
    Minkevich, A. V. (1980).Phys. Lett.,80A, 232.Google Scholar
  12. 12.
    Goenner, H., and Müller-Hoissen, F. (1984).Class. Quantum Gravity,1, 651.Google Scholar
  13. 13.
    Kobayashi, S., and Nomizu, K. (1963).Foundations of Differential Geometry, Vol. 1 (Wiley, New York).Google Scholar
  14. 14.
    Kuhfuss, R. (1984). Diploma thesis (Cologne).Google Scholar
  15. 15.
    Kuhfuss, R., and Nitsch, J. (1984). Preprint (Cologne).Google Scholar
  16. 16.
    Kopczynski, W. (1982).J. Phys. A 15, 493.Google Scholar
  17. 17.
    Hayashi, K., and Shirafuji, T. (1981).Phys. Rev. D,24, 3312.Google Scholar
  18. 18.
    Stelle, K. S. (1977).Phys. Rev. D,16, 953.Google Scholar
  19. 19.
    Kuchowicz, B. (1975).Acta Phys. Polon.,B6, 555.Google Scholar
  20. 20.
    Baekler, P. (1980).Phys. Lett.,94B, 44.Google Scholar
  21. 21.
    John, F. (1971).Partial Differential Equations (Springer, New York), p. 29.Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • F. Müller-Hoissen
    • 1
  • J. Nitsch
    • 2
  1. 1.Max-Planck-Institut für Physik und AstrophysikWerner-Heisenberg-Institut für PhysikMünchen 40Germany
  2. 2.Institut für Theoretische PhysikUniversität KölnKöln 41Germany

Personalised recommendations