General Relativity and Gravitation

, Volume 15, Issue 2, pp 129–163 | Cite as

Gravitational waves and red shifts: A space experiment for testing relativistic gravity using multiple time-correlated radio signals

  • L. L. Smarr
  • R. F. C. Vessot
  • C. A. Lundquist
  • R. Decher
  • Tsvi Piran
Research Articles

Abstract

We describe an experimental technique for detecting extremely low-frequency pulses of gravitational radiation (νGW ∼ 1–10 mHz) originating from collapsing supermassive objects (M ∼ 106−107m) occurring anywhere in the universe. Our technique is the natural outgrowth of a previous gravitational space mission. The novelty of our approach is in placing a highly stable hydrogen maser onboard a deep-space probe that controls a transmitter sending signals to earth. The spacecraft also includes a doppler transponder operating in the conventional two-way mode. Doppler tracking using simultaneously acquired one- and two-way information both on the spacecraft and at the earth station provides four time-records of frequency fluctuations. A single gravitational disturbance manifests itself as a uniquely determined pulse sequence in the two or more data sets whose amplitudes and arrival times depend on a single parameter. The repetition of the signal and the noises in the data can be used in a filtering scheme to improve the amplitude sensitivity by a factor of about 6 in amplitude (36 in energy). We believe the most likely of these gravitational pulse events occurring frequently enough to be detected (more than once per year) will come from the formation of black holes in the cores of ordinary spiral galaxies. We propose a technologically feasible and realistic space mission, using the above technique, to measure two aspects of gravitation with the same experimental equipment. The spaceflight begins in a highly eccentric earth orbit to measure the gravitational red shift and the second-order doppler effects to an accuracy of 5 parts in 106; at this level significant new tests of nonmetric theories of gravity are possible. Later, the spacecraft is sent into a heliocentric orbit to distances beyond 6 AU to search for gravitational radiation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vessot, R. F. C., and Levine, M. W. (1978b). InA Close Up of the Sun, M. Neugebauer and R. W. Davis, eds., JPL Publication, pp. 457–497.Google Scholar
  2. 2.
    Vessot, R. F. C. (1979).Radio Sci.,14, 629–647.Google Scholar
  3. 3.
    Ni, W. T. (1977).Phys. Rev. Lett.,38, 301.Google Scholar
  4. 4.
    Ni, W. T. (1979). Preprint.Google Scholar
  5. 5.
    Vessot, R. F. C., and Levine, M. W. (1978a).Gen. Rel. Grav.,20, 181. Also inExperimental Gravitation, Proceedings of the Accademia Lincei, Vol. 34, pp. 371–391.Google Scholar
  6. 6.
    Kleppner, D., Vessot, R. F. C., and Ramsey, N. F. (1970).Astrophys. Space Sci.,6, 13–32.Google Scholar
  7. 7.
    Vessot, R. F. C., and Levine, M. W. (1971). InProceedings of the Conference on Experimental Theories, R. W. Davis, ed. California Institute of Technology, pp. 54–64.Google Scholar
  8. 8.
    Shapiro, I. I. (1979). InEinstein Memorial Volume, A. Held, ed., Plenum Press, New York.Google Scholar
  9. 9.
    Will, C. M. (1979). InGeneral Relativity. An Einstein Centenary Volume, S. W. Hawking and W. Israel, eds., Cambridge U. P., Cambridge, pp. 24–89.Google Scholar
  10. 10.
    Taylor, J. H., Fowler, L. A., and McCulloch, P. N. (1979).Nature,277, 437.Google Scholar
  11. 11.
    Thorne, K. S., and Braginsky, V. B. (1976).Astrophys. J. Lett.,204, L1.Google Scholar
  12. 12.
    Estabrook, F. B., and Wahlquist, H. D. (1975).Gen. Rel. Grav.,6, 439.Google Scholar
  13. 13.
    Vessot, R. F. C., and Levine, M. W. (1974). InProceedings of the 28th Annual Symposium on Frequency Control (U.S. Army Electronics Command, Ft. Monmouth, New Jersey), pp. 408–414.Google Scholar
  14. 14.
    Armstrong, J. W., Woo, R., and Estabrook, F. B. (1979).Astrophys. J.,230, 570.Google Scholar
  15. 15.
    Brecher, K. (1977).Phys. Rev. Lett.,39, 1051, 1236; Newman, D., Ford, G. W., Rich, A., and Sweetman, E. (19{fx161-1}).Phys. Rev. Lett.,40, 1355.Google Scholar
  16. 16.
    Will, C. M. (1974).Phys. Rev. D,10, 2330.Google Scholar
  17. 17.
    Thorne, K. S., Lee, D. L., and Lightman, A. P. (1973).Phys. Rev. D,7, 3564.Google Scholar
  18. 18.
    Lightman, A. P., and Lee, D. L. (1973).Phys. Rev. D,8, 364.Google Scholar
  19. 19.
    Haugan, M. P., and Will, C. M. (1977).Phys. Rev. D,15, 2711.Google Scholar
  20. 20.
    Vessot, R. F. C. (1981). InProceedings of the International Symposium on Time and Frequency. Natural Physical Laboratory, New Delhi, India (February 10–12, 1981).Google Scholar
  21. 21.
    Vessot, R. F. C., Levine, M. W., Mattison, E. M., Blomberg, E. L., Hoffman, T. E., Nystrom, G. U., Farrel, B. F., Decher, R., Eby, P. B., Baugher, C. R., Watts, J. W., Teuber, D. L., and Wills, F. D. (1980).Phys. Rev. Lett.,45, 2081.Google Scholar
  22. 22.
    Allan, D. W. (1966).Proc. IEEE,54, 221.J. Inst. Electron. Telecommunication Eng., in press.Google Scholar
  23. 23.
    Vessot, R. F. C., and Levine, M. W. (1979). NASA Experimental Final Redshift Report, GPA Project Report, Contract NAS 8-27969.Google Scholar
  24. 24.
    Vessot, R. F. C., Mattison, E. M., and Blomberg, E. L. (1979). InProceedings of the 33rd Annual Frequency Control Symposium (USAERADCOM, Ft. Monmouth, New Jersey), pp. 511–514.Google Scholar
  25. 25.
    Epstein, R., and Clark, J. P. A. (1979). InSources of Gravitational Radiation, L. L. Smarr, ed., Cambridge U. P., Cambridge.Google Scholar
  26. 26.
    Weiss, R. (1979). InSources of Gravitational Radiation, L. L. Smarr, ed., Cambridge U. P., Cambridge.Google Scholar
  27. 27.
    Bertotti, B. (1973).Astrophys. Lett.,14, 51; Rosi, L. A., and Zimmerman, R. L. (1976).Astrophys. Space Sci.,45, 447; Anderson, A. J. (1977). InGravitazione Sperimentale, ed. B. Bertotti, Proceedings of the International Symposium on Experimental Gravitation, Pavia, Italy, 17–20 September, 1976, Accademia Nazionale dei Lincei, Roma; Hellings, R. W. (1979). J. P. L. preprint; Carr, B. J., Cal. Tech preprint OAP-566; Bertotti, B. and Carr, B. J., Cal. Tech. preprint OAP-564; Mashhoon, B., and Grishchuk, L. P., Cal. Tech. preprint OAP-562; Turner, M. S., Enrico Fermi Institute preprint 79-22.Google Scholar
  28. 28.
    Thorne, K. S. (1978). InTheoretical Principles in Astrophysics and Relativity, University of Chicago Press, Chicago.Google Scholar
  29. 29.
    Drever, P., private communication, gave important input to the adaptation process.Google Scholar
  30. 30.
    Thorne, K. S., Caves, C. M., Sandberg, V. D., Zimmermann, M., and Drever, R. W. P. (1979). InSources of Gravitational Radiation, L. L. Smarr, ed., Cambridge U. P., Cambridge.Google Scholar
  31. 31.
    Piran, T., Reiter, E., Unruh, W., and Vessot, R. F. C. (1981). To be published.Google Scholar
  32. 32.
    Estabrook, F. B., Hellings, R. W., Wahlquist, H. D., and Wolff, R. S. (1979). InSources of Gravitational Radiation, L. L. Smarr, ed., Cambridge University Press, Cambridge.Google Scholar
  33. 32a.
    See also: Estabrook, F. B., and Wahlquist, H. D. (1978).Acta Astron.,5, 5; Wahlquist, H. D., Anderson, J. D., Estabrook, F. B., and Thorne, K. S. (1977). InGravitazione Sperimentale, Atti dei Convegni Lincei, B. Bertotti, ed.,34, 335; Anderson, J. D., and Estabrook, F. B. (1979).J. Spacecraft Rockets, in press; F. B. Estabrook (1978). InA Close-Up of the Sun, J. P. L. Publication 78-70, M. Neugebauer and R. W. Davis, eds.Google Scholar
  34. 33.
    Mashhoon, B. (1979).Astrophys. J.,227, 1019; Turner, M. S. (1979). Enrico Fermi preprint 79-22.Google Scholar
  35. 34.
    Kaufmann, W. J. (1970).Nature,227, 157.Google Scholar
  36. 35.
    Hellings, R. W., Callahan, P. S., Anderson, J. D., and Moffet, A. T. (1981).Phys. Rev. D,23, 844.Google Scholar
  37. 36.
    Zimmerman, M. and Thorne, K. S. (1978). Cal. Tech. preprint.Google Scholar
  38. 37.
    Shapiro, S. L. (1979). InSources of Gravitational Radiation, L. L. Smarr, ed., Cambridge U. P., Cambridge.Google Scholar
  39. 38.
    Rees, M. (1977). InGravitazione Sperimentale Atti de Convegni Lincei, B. Bertotti, ed.Google Scholar
  40. 39.
    Rees, M. J. (1977).Ann. N.Y. Acad. Sci.,302, 613.Google Scholar
  41. 40.
    Blandford, R. (1979). InSources of Gravitational Radiation, L. L. Smarr, ed., Cambridge U. P., Cambridge.Google Scholar
  42. 41.
    Smarr, L. L. (1979). InSources of Gravitational Radiation, L. L. Smarr, ed., Cambridge U. P., Cambridge.Google Scholar
  43. 42.
    Detweiler, S. L. (1979). InSources of Gravitational Radiation, L. L. Smarr, ed., Cambridge U. P., Cambridge.Google Scholar
  44. 43.
    Fowler, W. A. (1964).Rev. Mod. Phys.,36, 545.Google Scholar
  45. 44.
    Sargent, W. L., Young, P. J., Boksenberg, A., Shortridge, K., Lynds, C. R., and Hartwick, F. D. A. (1978).Astrophys. J.,221, 731; Young, P. J., Westphal, J. A., Kristian, J., Wilson, C. P., and Landaver, F. P. (1978).Ibid.,221, 721; de Vaucouleurs, G., and Nieto, J. L. (1979).Ibid.,230, 697; Young, P. J., Sargent, W. L. W., Kristian, J., and Westphal, J. A. (1979).Ibid. Ap. J.,234, 76.Google Scholar
  46. 45.
    Lacy, J. H., Haas, F., Townes, C. H., and Geballe, T. R. (1979).Astrophys. J. (Lett.),227, L17; Wollman, E. R., Geballe, T. R., Lacy, J. H., Townes, C. H., and Rank, D. M. (1976).Astrophys. J. (Lett.),218, L103.Google Scholar
  47. 46.
    Rodriguez, L., and Chaisson, E. J. (1979).Astrophys. J.,228, 734.Google Scholar
  48. 47.
    Lynden-Bell, D., and Rees, M. J. (1979).Mon. Not. R. Astron. Soc.,152, 461.Google Scholar
  49. 48.
    Van Speybroeck, L., Epstein, A., Forman, W., Giacconi, R., Jones, C., Liller, W., and Smarr, L. (1979).Astrophys. J. (Lett.) Nov. 15.Google Scholar
  50. 49.
    Lightman, A. P., Giacconi, R., and Tananbaum, H. (1978).Astrophys. J.,224, 375.Google Scholar
  51. 50.
    Braginsky, V. B., and Gertsenshtein, M. E. (1967).JETP Lett.,5, 287.Google Scholar
  52. 51.
    Anderson, A. J. (1971).Nature,229, 547.Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • L. L. Smarr
    • 1
  • R. F. C. Vessot
    • 1
  • C. A. Lundquist
    • 2
  • R. Decher
    • 2
  • Tsvi Piran
    • 3
    • 4
  1. 1.Harvard-Smithsonian Center for AstrophysicsCambridge
  2. 2.NASA Marshall Space Flight CenterHuntsville
  3. 3.Racah Institute of PhysicsThe Hebrew UniversityJerusalemIsrael
  4. 4.Institute for Advanced StudyPrinceton

Personalised recommendations