Journal of Bioenergetics and Biomembranes

, Volume 25, Issue 4, pp 385–391

Na+-translocating NADH-quinone reductase of marine and halophilic bacteria

  • Tsutomu Unemoto
  • Maki Hayashi
Minireview

Abstract

The respiratory chain of marine and moderately halophilic bacteria requires Na+ for maximum activity, and the site of Na+-dependent activation is located in the NADH-quinone reductase segment. The Na+-dependent NADH-quinone reductase purified from marine bacteriumVibrio alginolyticus is composed of three subunits, α, β, and γ, with apparentMr of 52, 46, and 32kDa, respectively. The FAD-containing β-subunit reacts with NADH and reduces ubiquinone-1 (Q-1) by a one-electron transfer pathway to produce ubisemiquinones. In the presence of the FMN-containing α-subunit and the γ-subunit, Q-1 is converted to ubiquinol-1 without the accumulation of free radicals. The reaction catalyzed by the α-subunit is strictly dependent on Na+ and is strongly inhibited by 2-n-heptyl-4-hydroxyquinoline N-oxide (HQNO), which is tightly coupled to the electrogenic extrusion of Na+. A similar type of Na+-translocating NADH-quinone reductase is widely distributed among marine and moderately halophilic bacteria. The respiratory chain ofV. alginolyticus contains another NADH-quinone reductase which is Na+ independent and has no energy-transducing capacity. These two types of NADH-quinone reductase are quite different with respect to their mode of quinone reduction and their sensitivity toward NADH preincubation.

Key words

Na+ transport NADH-quinone reductase Na+ pump respiratory chain flavoprotein marine bacteria halophilic bacteria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avetisyan, A. V., Dibrov, P. A., Skulachev, V. P., and Sokolov, M. V. (1989).FEBS Lett. 254, 17–21.Google Scholar
  2. Avetisyan, A. V., Bogachev, A. V., Murtasina, R. A., and Skulachev, V. P. (1992).FEBS Lett. 306, 199–202.Google Scholar
  3. Dimroth, P. (1987).Microbiol. Rev. 51, 320–340.Google Scholar
  4. Dimroth, P., and Thomer, A. (1989).Arch. Microbiol. 151, 439–444.Google Scholar
  5. Drapeau, G. R., and MacLeod, R. A. (1963).Biochem. Biophys. Res. Commun. 12, 111–115.Google Scholar
  6. Efiok, B. J. S., and Webster, D. A. (1990).Biochem. Biophys. Res. Commun. 173, 370–375.Google Scholar
  7. Hayashi, M., and Unemoto, T. (1984).Biochim. Biopys. Acta 767, 470–478.Google Scholar
  8. Hayashi, M., and Unemoto, T. (1986).FEBS Lett. 202, 327–330.Google Scholar
  9. Hayashi, M., and Unemoto, T. (1987).Biochim. Biopys. Acta 890, 47–54.Google Scholar
  10. Hayashi, M., Miyoshi, T., Takashina, S., and Unemoto, T. (1989).Biochim. Biophys. Acta 977, 62–69.Google Scholar
  11. Hayashi, M., Miyoshi, T., Sato, M., and Unemoto, T. (1992).Biochim. Biophys. Acta 1099, 145–151.Google Scholar
  12. Kakinuma, Y., and Unemoto, T. (1985).J. Bacteriol. 163, 1293–1295.Google Scholar
  13. Ken-Dror, S., Shneaiderman, R., and Avi-Dor, Y. (1984).Arch. Biochem. Biophys. 229, 640–649.Google Scholar
  14. Ken-Dror, S., Preger, R., and Avi-Dor, Y. (1986a).Arch. Biochem. Biophys. 244, 122–127.Google Scholar
  15. Ken-Dror, S., Lanyi, J. K., Schobert, B., and Avi-Dor, Y. (1986b).Arch. Biochem. Biophys. 244, 766–772.Google Scholar
  16. Kim, Y. J., Mizushima, S., and Tokuda, H. (1991).J. Biochem. 109, 616–621.Google Scholar
  17. Kitada, M., and Horikoshi, K. (1977).J. Bacteriol. 131, 784–788.Google Scholar
  18. Kostyrko, V. A., Semeykina, A. L., Skulachev, V. P., Smirnova, I. A., Vaghina, M. L., and Verkhovskaya, M. L. (1991).Eur. J. Biochem. 198, 527–534.Google Scholar
  19. Krulwich, T. A. (1986).J. Membr. Biol. 89, 113–125.Google Scholar
  20. Kushner, D. J. (1978). InMicrobial Life in Extreme Environment (Kushner, D. J., ed.), Academic Press, London, pp. 317–368.Google Scholar
  21. Lanyi, J. K. (1979).Biochim. Biophys. Acta 559, 377–397.Google Scholar
  22. MacLeod, R. A. (1965).Bacteriol. Rev. 29, 9–23.Google Scholar
  23. Matsushita, K., Ohnishi, T., and Kaback, H. R. (1987).Biochemistry 26, 7732–7737.Google Scholar
  24. Meinhardt, S. W., Wang, D. C., Hon-nami, K., Yagi, T., Oshima, T., and Ohnishi, T. (1990).J. Biol. Chem. 265, 1360–1368.Google Scholar
  25. Miyoshi-Akiyama, T., Hayashi, M., and Unemoto, T. (1993).Biochim. Biophys. Acta,1141, 283–287.Google Scholar
  26. Ohnishi, T., Meinhardt, S. W., Matsushita, K., and Kaback, H. R. (1987). InBioenergetics: Structure and Function of Energy-Transducing Systems (Ozawa, T., and Papa, S., eds.), Japan Sci. Soc. Press, Tokyo, pp. 19–29.Google Scholar
  27. Ragan, C. I. (1987)Curr. Top. Bioenerg. 15, 1–36.Google Scholar
  28. Reichelt, J. L., and Baumann, P. (1974).Arch. Microbiol. 97, 329–345.Google Scholar
  29. Schobert, B., and Lanyi, J. K. (1982).J. Biol. Chem. 257, 10306–10313.Google Scholar
  30. Semeykina, A. L., Skulachev, V. P., Verkhovskaya, M. L., Bulygina, E. S., and Chumakov, K. M. (1989).Eur. J. Biochem. 183, 671–678.Google Scholar
  31. Skulachev, V. P. (1989).FEBS Lett. 250, 106–114.Google Scholar
  32. Sminova, I. A., Vaghina, M. L., and Kostyrko, V. A. (1990).Biochim. Biophys. Acta 1016, 385–391.Google Scholar
  33. Takeda, Y., Fukunaga, N., and Sasaki, S. (1988).Plant Cell Physiol. 29, 207–214.Google Scholar
  34. Tokuda, H. (1983).Biochem. Biophys. Res. Commun. 114, 113–118.Google Scholar
  35. tokuda, H., and Unemoto, T. (1981).Biochem. Biophys. Res. Commun. 102, 265–271.Google Scholar
  36. Tokuda, H., and Unemoto, T. (1982).J. Biol. Chem. 257, 10007–10014.Google Scholar
  37. Tokuda, H., and Unemoto, T. (1984).J. Biol. Chem. 259, 7785–7790.Google Scholar
  38. Tokuda, H., and Kogure, K. (1989).J. Gen. Microbiol. 135, 703–709.Google Scholar
  39. Tokuda, H., Sugasawa, M., and Unemoto, T. (1982).J. Biol. Chem. 257, 788–794.Google Scholar
  40. Tsuchiya, T., and Shinoda, S. (1985).J. Bacteriol. 162, 794–798.Google Scholar
  41. Udagawa, T., Unemoto, T., and Tokuda, H. (1986).J. Biol. Chem. 261, 2616–2622.Google Scholar
  42. Unemoto, T., and Hayashi, M. (1979).J. Biochem. 85, 1461–1467.Google Scholar
  43. Unemoto, T., and Hayashi, M. (1989).J. Bioenerg. Biomembr. 21, 649–662.Google Scholar
  44. Unemoto, T., Hayashi, M., Kozuka, Y., and Hayashi, M. (1974). InEffect of the Ocean Environment on Microbial Activities (Corwell, R. R., and Morita, R. Y., eds.), University Park Press, Baltimore, pp. 46–71.Google Scholar
  45. Unemoto, T., Hayashi, M., and Hayashi, M. (1977).J. Biochem. 82, 1389–1395.Google Scholar
  46. Unemoto, T., Tokuda, H., and Hayashi, M. (1990). InThe Bacteria, Vol. XII: Bacterial Energetics (Krulwich, T. A., ed.), Academic Press, New York, pp. 33–54.Google Scholar
  47. Unemoto, T., Miyoshi, T., and Hayashi, M. (1992a).FEBS Lett. 306, 51–53.Google Scholar
  48. Unemoto, T., Akagawa, A., Mizugaki, M., and Hayashi, M. (1992b).J. Gen. Microbiol. 138, 1999–2005.Google Scholar
  49. Wong, P. T. S., Thompson, J., and MacLeod, R. A. (1969).J. Biol. Chem. 244, 1016–1025.Google Scholar
  50. Yagi, T. (1991).J. Bionerg. Biomembr. 23, 211–225.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Tsutomu Unemoto
    • 1
  • Maki Hayashi
    • 1
  1. 1.Laboratory of Membrane Biochemistry, Faculty of Pharmaceutical SciencesChiba UniversityChibaJapan

Personalised recommendations