Journal of Bioenergetics and Biomembranes

, Volume 25, Issue 4, pp 347–356 | Cite as

Bacterial NADH-quinone oxidoreductases: Iron-sulfur clusters and related problems

  • Vladimir D. Sled'
  • Thorsten Friedrich
  • Hans Leif
  • Hanns Weiss
  • Steven W. Meinhardt
  • Yoshihiro Fukumori
  • Melissa W. Calhoun
  • Robert B. Gennis
  • Tomoko Ohnishi


Many bacteria contain proton-translocating membrane-bound NADH-quinone oxidoreductases (NDH-1), which demonstrate significant genetic, spectral, and kinetic similarity with their mitochondrial counterparts. This review is devoted to the comparative aspects of the ironsulfur cluster composition of NDH-1 from the most well-studied bacterial systems to date.:Paracoccus denitrificans, Rhodobacter sphaeroides, Escherichia coli, andThermus thermophilus. These bacterial systems provide useful models for the study of coupling Site I and contain all the essential parts of the electron-transfer and proton-translocating machinery of their eukaryotic counterparts.

Key words

NADH-quinone oxidoreductase: NDH-1 iron-sulfur cluster Paracoccus denitrificans Rhodobacter sphaeroides Escherichia coli Thermus thermophilus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albracht, S. P. J., van Verseveld, H. W., Hagen, W. R., and Kalkman, M. L. (1980).Biochim. Biophys. Acta 593, 173–186.Google Scholar
  2. Anraku, Y. (1988).Ann. Rev. Biochem. 57, 101–132.Google Scholar
  3. Anraku, Y., and Gennis, R. B. (1987).Trends Biochem. Sci. 12, 262–266.Google Scholar
  4. Arizmendi, J. M., Ruunswick, M. J., Skehel, J. M., and Walker, J. E. (1992a).FEBS Lett. 301, 237–242.Google Scholar
  5. Arizmendi, J. M., Skehel, J. M., Ruunswick, M. J., Fearnley, I. M., and Walker, J. E. (1992b).FEBS Lett. 313, 80–84.Google Scholar
  6. Baccarini-Melandri, A., Zannoni, D., and Melandri, B. A. (1973).Biochim. Biophys. Acta 314, 298–311.Google Scholar
  7. Baugh, R. F., and King, T. E. (1972).Biochem Biophys. Res. Commun. 49, 1165–1173.Google Scholar
  8. Beinert, H., and Albracht, S. P. J. (1982).Biochim. Biophys. Acta 683, 245–277.Google Scholar
  9. Berks, B. C., and Ferguson, S. J. (1991).Biochem. Soc. Trans. 19, 581–588.Google Scholar
  10. Blumberg, W. E., and Peisach, J. (1974).Arch. Biochem. Biophys. 162, 502–512.Google Scholar
  11. Burbaev, D. Sh., Moroz, I. A., Kotlyar, A. B., Sled', V. D., and Vinogradov, A. D. (1989).FEBS Lett. 254, 47–51.Google Scholar
  12. Calhoun, M. W., and Gennis, R. B. (1993).J. Bacteriol., in press.Google Scholar
  13. Calhoun, M. W., Oden, K. L., Gennis, R. B., de Mattos, M. J. T., and Meijssel, O. M. (1993).J. Bacteriol., in press.Google Scholar
  14. Cao, J., Hostler, J., Shapleigh, J., Revzin, A., and Ferguson-Miller, S. (1992).J. Biol. Chem. 267 24273–24278.Google Scholar
  15. Cobley, J. G., Grossman, S., Singer, T. P., and Beinert, H. (1975).J. Biol. Chem. 250, 211–217.Google Scholar
  16. Cotton, N. P. J., Lever, T. M., Nore, B. F., Jones, M. R., and Jackson, J. B. (1989).Eur. J. Biochem. 182, 593–603.Google Scholar
  17. Cremona, T., and Kearney, E. J. (1964).J. Biol. Chem. 239, 2328–2334.Google Scholar
  18. Dugad, L. B., La Mar, G. N., Banci, L., and Bertini, I. (1990).Biochemistry 29, 2263–2271.Google Scholar
  19. Dupuis, A. (1992).FEBS Lett. 301, 215–218.Google Scholar
  20. Dupuis, A., Skehel, J. M., and Walker, J. E. (1991).Biochem J. 224, 525–534.Google Scholar
  21. Earley, F. G. P., Patel, S. D., Ragan, C. I., and Attardi, G. (1987).FEBS Lett. 219, 108–113.Google Scholar
  22. Fee, J. A., Kuila, D., Mather, M. W., and Yoshida, T. (1986).Biochim. Biophys. Acta 853, 153–185.Google Scholar
  23. Finel, M., Skehel, J. M., Albracht, S. P. J., Fearnley, I. M., and Walker, J. E. (1992).Biochemistry 31, 11425–11434.Google Scholar
  24. Gennis, R. B., Casey, R. P., Azzi, A., and Ludwig, B. (1982).Eur. J. Biochem. 125, 189–195.Google Scholar
  25. Gutman, M., Singer, T. P., and Beinert, H. (1972).Biochemistry 11, 556–562.Google Scholar
  26. Hatefi, Y., Haavik, A. G., and Griffiths, D. (1962).J. Biol. Chem. 237, 1676–1680.Google Scholar
  27. Hayashi, M., Miyoshi, T., Takashima, S., and Unemoto, T. (1989).Biochim. Biophys. Acta 977, 62–69.Google Scholar
  28. Huang, P.-K. C., and Pharo, R. L. (1971).Biochim. Biophys. Acta 245, 240–244.Google Scholar
  29. Ingledew, W. J., and Ohnishi, T. (1980).Biochem J. 186, 111–117.Google Scholar
  30. Ingledew, W. J., and Pool, R. K. (1984).Microbiol. Rev. 84, 222–271.Google Scholar
  31. Ingeldew, W. J., Reid, G. A., Poole, R. K., Blum, H., and Ohnishi, T. (1980).FEBS Lett. 111, 223–227.Google Scholar
  32. Ise, W., Haiker, H., and Weiss, H. (1985).EMBO J. 2, 2075–2080.Google Scholar
  33. John, P., and Whatley, F. R. (1975).Nature (London)254, 495–498.Google Scholar
  34. Kagawa, Y. (1978).Biochim. Biophys. Acta 505, 45–93.Google Scholar
  35. Kaniuga, Z., and Gardas, A. (1967).Biochim. Biophys. Acta 143, 647–649.Google Scholar
  36. Kotlyar, A. B., Sled', V. D., Burbaev, D. Sh., Moroz, I. A., and Vinogradov, A. D. (1990).FEBS Lett. 264, 17–20.Google Scholar
  37. Kroger, A., and Unden, G. (1985). InCoenzyme Q (Lenaz, G., ed.), Wiley, New York, pp. 285–300.Google Scholar
  38. La Monica, R. F., and Marrs, B. L. (1976).Biochim. Biophys. Acta 423, 431–439.Google Scholar
  39. Loundershausen, M., Leicht, W., Lieb, F., Moeschler, H., and Weiss, H. (1991).Pestic. Sci. 33, 427–438.Google Scholar
  40. Ludwig, B., and Schatz, G. (1980).Proc. Natl. Acad. Sci. USA 77, 7732–7737.Google Scholar
  41. Matsushita, K., Ohnishi, T., and Kaback, H. R. (1987).Biochemistry 26, 7732–7737.Google Scholar
  42. Meinhardt, S. W., Kula, T., Yagi, T., Lillich, T., and Ohnishi, T. (1987).J. Biol. Chem. 262, 9147–9153.Google Scholar
  43. Meinhardt, S. W., Matsushita, K., Kaback, H. R., and Ohnishi, T. (1989).Biochemistry 28, 2153–2160.Google Scholar
  44. Meinhardt, S. W., Wang, D.-C., Hon-nami, K., Yagi, T., Oshima, T., and Ohnishi, T. (1990).J. Biol. Chem. 265, 1360–1368.Google Scholar
  45. Ohnishi, T. (1973).Biochim. Biophys. Acta 301, 105–128.Google Scholar
  46. Ohnishi, T. (1979). InMembrane Proteins in Energy Trunsduction (Capaldi, R. A., ed.), Marcel Dekker, New York, pp. 1–87.Google Scholar
  47. Ohnishi, T., Leigh, J. S., Ragan, C. I., and Racker, E. (1974).Biochem. Biophys. Res. Commun. 56, 775–782.Google Scholar
  48. Paech, C., Friend, A., and Singer, T. P. (1982).Biochem. J. 203, 477–481.Google Scholar
  49. Pilkington, S. J., and Walker, J. E. (1989).Biochemistry 28, 3257–3264.Google Scholar
  50. Pilkington, S. J., Arizmendi, J. M., Fearnley, I. M., Ruunswick, M. J., Skehel, J. M., and Walker, J. E. (1993).Biochem. Soc. Trans. 21, 26–31.Google Scholar
  51. Ragan, C. I. (1978).Biochem J. 172, 539–547.Google Scholar
  52. Ragan, C. I. (1990).Biochem. Soc. Trans. 18, 515–516.Google Scholar
  53. Ragan, C. I., and Racker, E. (1973).J. Biol. Chem. 248, 6876–6884.Google Scholar
  54. Ringler, R. L., Minakami, S., and Singer, T. P. (1963).J. Biol. Chem. 238, 801–810.Google Scholar
  55. Runswick, M. J., Gennis, R. B., Fearnley, I. M., and Walker, J. E. (1989).Biochemistry 28, 9425–9459.Google Scholar
  56. Schatz, C., and Racker, E. (1966).J. Biol. Chem. 241, 1429–1438.Google Scholar
  57. Sled', V. D., Zinich, V. N., and Kotlyar, A. B. (1990).Biochemistry (USSR) 54, 1284–1288.Google Scholar
  58. Sled', V. D., Rudnitzky, N., Hatefi, Y., and Ohnishi, T. (1993).Biophys. J. 64, A105.Google Scholar
  59. Spiro, S., Roberts, R. E., and Guest, J. R. (1989).Mol. Microbiol. 3, 601–608.Google Scholar
  60. Stouthamer, A. H. (1980).Trends Biochem. Sci. 6, 164–166.Google Scholar
  61. Suzuki, H., and King, T. (1983).J. Biol. Chem. 258, 352–358.Google Scholar
  62. Takamiya, K., Doi, M., and Okimatsu, H. (1982).Plant Cell. Physiol. 23, 987–997.Google Scholar
  63. Trumpower, B. L. (1990).Microbiol. Rev. 52, 101–129.Google Scholar
  64. Walker, J. E. (1992).Q. Rev. Biophys. 25, 253–324.Google Scholar
  65. Weidner, U., and Weiss, H. (1992).Biochim. Biophys. Acta 1101, 151.Google Scholar
  66. Weidner, U., Geier, S., Ptock, A., Friedrich, T., Leif, H., and Weiss, H. (1993).J. Mol. Biol., in press.Google Scholar
  67. Weiss, H., Friedrich, Hofhaus, G., and Preis, D. (1991).Eur. J. Biochem. 197, 563–576.Google Scholar
  68. Xu, X., Matsuno-Yagi, A., and Yagi, T. (1991a).Biochemistry 30, 6422–6428.Google Scholar
  69. Xu, X., Matsuno-Yagi, A., and Yagi, T. (1991b).Biochemistry 30, 8678–8684.Google Scholar
  70. Xu, X., Matsuno-Yagi, A., and Yagi, T. (1992a).Biochemistry 31, 6925–6932.Google Scholar
  71. Xu, X., Matsuno-Yagi, A., and Yagi, T. (1992b).Arch. Biochem. Biophys. 296, 40–48.Google Scholar
  72. Xu, X., Matsuno-Yagi, A., and Yagi, T. (1993).Biochemistry 32, 9688–981.Google Scholar
  73. Yagi, T. (1986).Arch. Biochem. Biophys. 250, 302–311.Google Scholar
  74. Yagi, T. (1991).J. Bioenerg. Biomembr. 23, 211–225.Google Scholar
  75. Yagi, T. (1993).Biochim. Biophys. Acta 1141, 1–17.Google Scholar
  76. Yagi, T., and Hatefi, Y. (1988).J. Biol. Chem. 263, 16150–16155.Google Scholar
  77. Yagi, T., Hon-nami, K., and Ohnishi, T. (1988).Biochemistry 27, 2008–2013.Google Scholar
  78. Yang, X., and Trumpower, B. L. (1986).J. Biol. Chem. 261, 12282–12289.Google Scholar
  79. Yumoto, I., Wang, D.-C., Calhoun, M. W., Gennis, R. B., Friedrich, T., Weiss, H., and Ohnishi, T. (1992).Biochim. Biophys. Acta 1101, 152.Google Scholar
  80. Yun, C.-H., Beci, R., Crofts, A. R., Kaplan, S., and Gennis, R. B. (1990).Eur. J. Biochem. 194, 399–411.Google Scholar
  81. Zannoni, D., and Ingledew, W. J. (1983).FEMS Microbiol. Lett. 17, 331–334.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Vladimir D. Sled'
    • 1
  • Thorsten Friedrich
    • 2
  • Hans Leif
    • 2
  • Hanns Weiss
    • 2
  • Steven W. Meinhardt
    • 3
  • Yoshihiro Fukumori
    • 4
  • Melissa W. Calhoun
    • 5
  • Robert B. Gennis
    • 5
  • Tomoko Ohnishi
    • 1
  1. 1.Department of Biochemistry and BiophysicsUniversity of PennsylvaniaPhiladelphia
  2. 2.Düsseldorf Institute für BiochemieHeinrich-Heine-UniversitätDüsseldorf 1Germany
  3. 3.Department of BiochemistryNorth Dakota State UniversityFargo
  4. 4.Department of Life scienceTokyo institute of TechnologyYokohamaJapan
  5. 5.Department of ChemistryUniversity of IllinoisUrbana

Personalised recommendations