Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 25, Issue 4, pp 339–345 | Cite as

Characteristics of the energy-transducing NADH-quinone oxidoreductase ofParacoccus denitrificans as revealed by biochemical, biophysical, and molecular biological approaches

  • Takao Yagi
  • Takahiro Yano
  • Akemi Matsuno-Yagi
Article

Abstract

A comparison of the mitochondrial NADH-ubiquinone oxidoreductase and the energy-transducing NADH-quinone oxidoreductase (NDH-1) ofParacoccus denitrificans revealed that both systems have similar electron-transfer and energy-transduction pathways. In addition, both complexes are sensitive to the same inhibitors and contain similar electron carriers, suggesting that theParacoccus NDH-1 may serve as a useful model system for the study of the human enzyme complex. The gene cluster encoding theParacoccus NDH-1 has been cloned and sequenced. It is composed of 18,106 base pairs and contains 14 structural genes and six unidentified reading frames (URFs). The structural genes, URFs, and their polypeptides have been characterized. We also discuss nucleotide sequences which are believed to play a role in the regulation of the NDH-1 gene cluster andParacoccus NDH-1 subunits which may contain the binding sites of substrates and/or electron carriers.

Key words

NADH-quinone oxidoreductase Paracoccus denitrificans gene cluster H+ pump gene expression FMN iron-sulfur cluster 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albracht, S. P. J., van Verseveld, H. W. Hagen, W. R., and Kalkman, M. L. (1980).Biochim. Biophys. Acta 593 173–186.Google Scholar
  2. Beinert, H., and Kennedy, M. C. (1989).Eur. J. Biochem. 186 5–15.Google Scholar
  3. Bell, P. J., Andrews, S. C., Sivak, M. N., and Guest, J. R. (1989),J. Bacteriol. 171 3494–3503.Google Scholar
  4. Bourne, R. M. and Rich, P. R. (1992).Biochem. Soc. Trans. 20 577–582.Google Scholar
  5. Cammack, R. (1992).Adv. Inorg. Chem. 38 281–322.Google Scholar
  6. Chen, S., and Guillory, R. J. (1984).J. Biol. Chem. 259 5124–5131.Google Scholar
  7. Devereux, J., Haeberli, P., and Smithies, O. (1984).Nucleic Acids Res. 12 387–395.Google Scholar
  8. Dupuis, A. (1992).FEBS Lett. 301 215–218.Google Scholar
  9. Fukuyama, K., Matsubara, H., and Rogers, L. J., (1992).J. Mol. Biol. 225 775–789.Google Scholar
  10. George, C. L., and Ferguson, S. J. (1987).Biochem. J. 244 661–668.Google Scholar
  11. Gold, L. (1988).Annu. Rev. Biochem. 57 199–233.Google Scholar
  12. Gold, L., Pribnow, D., Schneider, T., Shinedling, S., Singer, B. S., and Stormo, G. (1981).Annu. Rev. Microbiol. 35 365–403.Google Scholar
  13. Hatefi, Y. (1985).Annu. Rev. Biochem. 54 1015–1069.Google Scholar
  14. Hatefi, Y., Ragan, C. I., and Galante, Y. M. (1985). InThe Enzymes of Biological Membranes (Martonosi, A. N., ed.), Plenum Press, New York, pp. 1–70.Google Scholar
  15. Hayashi, M., and Unemoto, T. (1987).Biochim. Biophys. Acta 890 47–54.Google Scholar
  16. Hayashi, M., Miyoshi, T., Takashina, S., and Unemoto, T. (1989).Biochim. Biophys. Acta 977 62–69.Google Scholar
  17. Heinrich, H. and Werner, S. (1992).Biochemistry 31 11413–11419.Google Scholar
  18. Heinrich, H., Azevedo, J. E., and Werner, S. (1992).Biochemistry 31 11420–11424.Google Scholar
  19. John, P., and Whatley, F. R. (1975).Nature (London) 254 495–498.Google Scholar
  20. John, P., and Whatley, F. R. (1977).Biochim. Biophus. Acta 463 129–153.Google Scholar
  21. Kuo, C.-F., McRee, D. E., Fisher, C. L., O'Handley, S. F., Cunningham, R. P., and Tainer, J. A. (1992).Science 258 434–440.Google Scholar
  22. Kurowski, B. and Ludwig, B. (1987).J. Biol. Chem. 262 13805–13811.Google Scholar
  23. Lu, P., and Rich, A. (1971).J. Mol. Biol. 58 513–531.Google Scholar
  24. Matsubara, H., and Saeki, K. (1992).Adv. Inorg. Chem. 38 223–280.Google Scholar
  25. Meinhardt, S. W., Kula, T., Yagi, T., Lillich, T., and Ohnishi, T. (1987a).J. Biol. Chem. 262 9147–9153.Google Scholar
  26. Meinhardt, S. W., Yang, X., Trumpower, B. L., and Ohnishi, T. (1978b).J. Biol. Chem. 262 8702–8706.Google Scholar
  27. Meinhardt, S. W., Matsushita, K., Kaback, H. R., and Ohnishi, T. (1989).Biochemistry 28 2153–2160.Google Scholar
  28. Meinhardt, S. W., Wang, D.-C., Hon-nami, K.,Yagi, T., Oshima, T., and Ohnishi, T. (1990).J. Biol. Chem. 265 1360–1368.Google Scholar
  29. Nelson, M. J., Jin, H., Turner, I. M., Grove, G., Scarrow, R. C., Brennan, B. A., and Que, L. (1991).J. Am. Chem. Soc. 113 7072–7073.Google Scholar
  30. Ohnishi, T., and Salerno, J. C. (1982).Iron-Sulfur Proteins 4 285–327.Google Scholar
  31. Ragan, C. I. (1987).Curr. Top. Bioenerg. 15 1–36.Google Scholar
  32. Shine, J., and Dalgarno, L. (1975).Nature (London) 254 34–38.Google Scholar
  33. Steinmüller, K. (1992).Plant Mol. Biol. 18 135–137.Google Scholar
  34. Steinmüller, K., Ley, A. C., Steinmetz, A. A., Sayre, R. T., and Bogorad, L. (1989).Mol. Gen. Genet. 216 60–69.Google Scholar
  35. Steinrücke, P., Gerhus, E., Jetzek, M., Turba, A., and Ludwig, B. (1991).J. Bioenerg. Biomembr. 23 227–239.Google Scholar
  36. Stouthamer, A. H. (1992).Antonie Van Leeuwenhoek 61 1–33.Google Scholar
  37. Suzuki, H., and Ozawa, T. (1986).Biochem. Biophys. Res. Commun. 138 1237–1242.Google Scholar
  38. Trumpower, B. L. (1991).J. Bioenerg. Biomembr. 23 241–255.Google Scholar
  39. Unemoto, T., and Hayashi, M. (1989).J. Bioenerg. Biomembr. 21 649–662.Google Scholar
  40. Van der Oost, J., Haltia, T., Raitio, M., and Saraste, M. (1991).J. Bioenerg. Biomembr. 23 257–267.Google Scholar
  41. Vollmer, S. J., Switzer, R. L., and Debrunner, P. G. (1983).J. Biol. Chem. 258 14284–14293.Google Scholar
  42. Walker, J. E., Saraste, M., and Gay, N. J. (1984).Biochim. Biophys. Acta 768 164–200.Google Scholar
  43. Walker, J. E., Arizmendi, J. M., Dupuis, A., Fearnley, I. M., Finel, M., Medd, S. M., Pilkington, S. J., Runswick, M. J., and Skehel, J. M. (1992).J. Mol. Biol. 226 1051–1072.Google Scholar
  44. Weidner, U., Nehls, U., Schneider, R., Fecke, W., Leif, H., Schmiede, A., Friedrich, T., Zensen, R., Schulte, U., Ohnishi, T., and Weiss, H. (1992).Biochim. Biophys. Acta 1101 177–180.Google Scholar
  45. Woods, S. A., Schwartzbach, S. D., and Guest, J. R. (1988).Biochim. Biophys. Acta 954 14–26.Google Scholar
  46. Xu, X. and Yagi, T. (1991).Biochem. Biophys. Res. Commun. 174 667–672.Google Scholar
  47. Xu, X., Matsuno-Yagi, A., and Yagi, T. (1991a).Biochemistry 30 6422–6428.Google Scholar
  48. Xu, X., Matsuno-Yagi, A., and Yagi, T. (1991b).Biochemistry 30 8678–8684.Google Scholar
  49. Xu, X., Matsuno-Yagi, A., and Yagi, T. (1992a).Arch. Biochem. Biophys. 296 40–48.Google Scholar
  50. Xu, X., Matsuno-Yagi, A., and Yagi, T. (1992b).Biochemistry 31 6925–6932.Google Scholar
  51. Xu, X., Matsuno-Yagi, A., and Yagi, T. (1993).Biochemistry 32 968–981.Google Scholar
  52. Yagi, T. (1986).Arch. Biochem. Biophys. 250 302–311.Google Scholar
  53. Yagi, T. (1987).Biochemistry 26 2822–2828.Google Scholar
  54. Yagi, T. (1988).Biophysics 28 27–30.Google Scholar
  55. Yagi, T. (1989).Protein Nucleic Acid Enzyme 34 351–363.Google Scholar
  56. Yagi, T. (1990).Arch. Biochem. Biophys. 281 305–311.Google Scholar
  57. Yagi, T. (1991).J. Bioenerg. Biomembr. 23 211–225.Google Scholar
  58. Yagi, T. (1993).Biochim. Biophys. Acta 1141 1–17.Google Scholar
  59. Yagi, T., and Dinh, T. M. (1990).Biochemistry 29 5515–5520.Google Scholar
  60. Yagi, T., Hon-nami, K., and Ohnishi, T. (1988).Biochemistry 27 2008–2013.Google Scholar
  61. Yagi, T., Xu, X., and Matsuno-Yagi, A. (1992).Biochim. Biophys. Acta 1101 181–183.Google Scholar
  62. Yasunobu, K. T., and Tanaka, M. (1980).Methods Enzymol. 69 228–238.Google Scholar
  63. Yumoto, N., and Tokushige, M. (1988).Biochem. Biophys. Res. Commun. 153 1236–1243.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Takao Yagi
    • 1
  • Takahiro Yano
    • 1
  • Akemi Matsuno-Yagi
    • 1
  1. 1.SBR-15, Division of Biochemistry, Department of Molecular and Experimental MedicineThe Scripps Research InstituteLa Jolla

Personalised recommendations