Journal of Bioenergetics and Biomembranes

, Volume 25, Issue 4, pp 331–337 | Cite as

Attempts to define distinct parts of NADH: Ubiquinone oxidoreductase (complex I)

  • Thorsten Friedrich
  • Uwe Weidner
  • Uwe Nehls
  • Wolfgang Fecke
  • Regina Schneider
  • Hanns Weiss
Minireview

Abstract

The NADH:ubiquinone oxidoreductase (complex I) is made up of a peripheral part and a membrane part. The two parts are arranged perpendicular to each other and give the complex an unusual L-shaped structure. The peripheral part protrudes into the matrix space and constitutes the proximal segment of the electron pathway with the NADH-binding site, the FMN and at least three iron-sulfur clusters. The membrane part constitutes the distal segment of the electron pathway with at least one iron-sulfur cluster and the ubiquinone-binding site. Both parts are assembled separately and relationships of the major structural modules of the two parts with different bacterial enzymes suggest, that both parts also emerged independently in evolution. This assumption is further supported by the conserved order of bacterial complex I genes, which correlates with the topological arrangement of the corresponding subunits in the two parts of complex I.

Key words

NADH:ubiquinone oxidoreductase complex I iron-sulfur cluster assembly gene disruption Neurospora crassa Escherichia coli 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, S., De Bruijn, M. H. L., Coulson, A. R., Eperon, I. C., Sanger, F., and Young, I. G. (1982).J. Mol. Biol. 156 683–717.Google Scholar
  2. Arizmendi, J. M., Skehel, J. M., Runswick, M. J., Fearnley, I. M., and Walker, J. W. (1992a).FEBS Lett. 313 80–84.Google Scholar
  3. Arizmendi, J. M., Runswick, M. J., Skehel, J. M., and Walker, J. E. (1992b).FEBS Lett. 301 237–242.Google Scholar
  4. Böhm, R., Sauter, M., and Böck, A. (1990).Mol. Microbiol. 4 231–243.Google Scholar
  5. Dupuis, A., Skehel, J. M., and Walker, J. E. (1991).Biochemistry 30 2954–2960.Google Scholar
  6. Earley, F. G. P., Patel, S. D., Ragan, C. I., and Attardi, G. (1987).FEBS Lett. 219 108–113.Google Scholar
  7. Fearnley, I. M., and Walker, J. E. (1992).Biochim. Biophys. Acta 1140 105–134.Google Scholar
  8. Fearnley, I. M., Runswick, M. J., and Walker, J. E. (1989)EMBO J. 8 665–672.Google Scholar
  9. Friedrich, T., Hofhaus, G., Ise, W., Nehls, U., Schmitz, B., and Weiss, H. (1989).Eur. J. Biochem. 180 173–180.Google Scholar
  10. Friedrich, T., Strohdeicher, M., Hofhaus, G., Preis, D., Sahm, H., and Weiss, H. (1990).FEBS Lett. 265 37–40.Google Scholar
  11. Hofhaus, G., Weiss, H., and Leonard, K. (1991).J. Mol. Biol. 221 1027–1043.Google Scholar
  12. Klein, P., Kanehisa, M., and DeLisi, C. (1985).Biochim. Biophys. Acta 815 468–476.Google Scholar
  13. Nehls, U., Friedrich, T., Schmiede, A., Ohnishi, T., and Weiss, H. (1992).J. Mol. Biol. 227 1032–1042.Google Scholar
  14. Ohnishi, T. (1979). InMembrane Proteins in Energy Transduction (Capaldi, R. A., ed.), Marcel Dekker, New York, pp. 1–87.Google Scholar
  15. Pilkington, S. J., and Walker, J. E. (1989).Biochemistry 28 3257–3264.Google Scholar
  16. Pilkington, S. J., Skehel, J. M., Gennis, R. B., and Walker, J. E. (1991a).Biochemistry 30 2166–2175.Google Scholar
  17. Pilkington, S. J., Skehel, J. M., and Walker, J. E. (1991b).Biochemistry 30 1901–1908.Google Scholar
  18. Preis, D., Weidner, U., Conzen, C., Azevedo, J. E., Nehls, U., Röhlen, D., van der Pas, J., Sackmann, U., Schneider, R., Werner, S., and Weiss, H. (1991).Biochim. Biophys. Acta 1090 133–138.Google Scholar
  19. Runswick, M. J., Gennis, R. B., Fearnley, I. M., and Walker, J. E. (1989).Biochemistry 28 9452–9459.Google Scholar
  20. Sauter, M., Böhm, R., and Böck, A. (1992).Mol. Microbiol. 6 1523–1532.Google Scholar
  21. Schmidt, M., Friedrich, T., Wallrath, J., Ohnishi, T., and Weiss, H. (1992).FEBS Lett. 313 8–11.Google Scholar
  22. Tran-Betcke, A., Warnecke, U., Böcker, C., Zaborosch, C., and Friedrich, B. (1990).J. Bacteriol. 172 2920–2929.Google Scholar
  23. Tuschen, G., Sackmann, U., Nehls, U., Haiker, H., Buse, G., and Weiss, H. (1990).J. Mol. Biol. 213 845–857.Google Scholar
  24. Walker, J. E. (1992).Q. Rev. Biophys. 25 253–324.Google Scholar
  25. Walker, J. E., and Cozens, A. L. (1986). Evolution of ATP synthase.Chem. Scr. 26B 263–272.Google Scholar
  26. Wang, D.-C., Meinhardt, S. W., Sackmann, U., Weiss, H., and Ohnishi, T. (1991).Eur. J. Biochem. 197 257–264.Google Scholar
  27. Weidner, U., Nehls, U., Schneider, R., Fecke, W., Leif, H., Schmiede, A., Friedrich, T., Zensen, R., Schulte, U., Ohnishi, T., and Weiss, H. (1992).Biochim. Biophys. Acta 1101 177–180.Google Scholar
  28. Weidner, U., Geier, S., Ptock, A., Friedrich, T., Leif, H., and Weiss, H. (1993).J. Mol. Biol., in press.Google Scholar
  29. Weiss, H., and Friedrich, T. (1991).J. Bioenerg. Biomembr. 23 743–754.Google Scholar
  30. Weiss, H., Friedrich, T., Hofhaus, G., and Preis, D. (1991).Eur. J. Biochem. 197 563–576.Google Scholar
  31. Xu, X., Matsuno-Yagi, A., and Yagi, T. (1992).Biochemistry 31 6925–6932.Google Scholar
  32. Xu, X., Matsuno-Yagi, A., and Yagi, T. (1993).Biochemistry 32 968–981.Google Scholar
  33. Yagi, T. (1991).J. Bioenerg. Biomembr. 23 211–225.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Thorsten Friedrich
    • 1
  • Uwe Weidner
    • 1
  • Uwe Nehls
    • 1
  • Wolfgang Fecke
    • 1
  • Regina Schneider
    • 1
  • Hanns Weiss
    • 1
  1. 1.Institut für BiochemieHeinrich-Heine-Universität DüsseldorfDüsseldorf 1Germany

Personalised recommendations