General Relativity and Gravitation

, Volume 16, Issue 2, pp 175–192 | Cite as

A theorem of cosmic censorship: A necessary and sufficient condition for future asymptotic predictability

  • Richard P. A. C. Newman
Research Articles


It is shown that censorship is a consequence of a condition which requires only the absence of naked singularities of less than a certain finite strength.


Differential Geometry Naked Singularity Cosmic Censorship Finite Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Newman, R.P.A.C. (1983).Gen. Rel. Grav.,15, 641.Google Scholar
  2. 2.
    Clarke, C.J.S., and de Felice, F. (1984).Gen. Rel. Grav.,16, 139.Google Scholar
  3. 3.
    Hawking, S. W., and Ellis, G.F.R. (1973).The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics (Cambridge University Press, London).Google Scholar
  4. 4.
    Yodzis, P., Seifert, H. J., and Muller zum Hagen, H. (1973).Commun. Math. Phys.,34, 135.Google Scholar
  5. 5.
    Yodzis, P., Seifert, H. J., and Muller zum Hagen, H. (1974).Commun. Math. Phys.,37, 29.Google Scholar
  6. 6.
    Seifert, H. J. (1979).Gen. Rel. Grav.,10, 1065.Google Scholar
  7. 7.
    Tipler, F. J., (1977).Phys. Lett.,64A, 8.Google Scholar
  8. 8.
    Penrose, R. (1978). InTheoretical Principles in Astrophysics and Relativity, N. R. Lebovitz, W. H. Reid, and P. O. Vandervoort, eds. (University of Chicago Press, Chicago), pp. 217–243.Google Scholar
  9. 9.
    Krolak, A. (1983).Gen. Rel. Grav.,15, 99.Google Scholar
  10. 10.
    Krolak, A. (1984).Gen. Rel. Grav.,16, 121.Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • Richard P. A. C. Newman
    • 1
  1. 1.Department of Applied MathematicsQueen Mary CollegeLondonEngland

Personalised recommendations