General Relativity and Gravitation

, Volume 16, Issue 5, pp 495–500 | Cite as

The significance of curvature in general relativity

  • G. S. Hall
Research Articles


In General Relativity, one has several traditional ways of interpreting the curvature of spacetime, expressed either through the curvature tensor or the sectional curvature function. This essay asks what happens if curvature is treated on a more primitive level, that is, if the curvature is prescribed, what information does one have about the metric and associated connection of space-time? It turns out that a surprising amount of information is available, not only about the metric and connection, but also, through Einstein's equations, about the algebraic structure of the energy-momentum tensor.


General Relativity Differential Geometry Sectional Curvature Algebraic Structure Curvature Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hawking, S. W., and Ellis, G. F. R. (1973).The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge.Google Scholar
  2. 2.
    Anderson, J. L. (1967).Principles of Relativity Physics. Academic Press, New York.Google Scholar
  3. 3.
    Kretchmann, E. (1917).Ann. Phys. (Leipzig),53, 575.Google Scholar
  4. 4.
    Synge, J. L., and Schild, A. (1949).Tensor Calculus. University of Toronto Press, Toronto.Google Scholar
  5. 5.
    Thorpe, J. A. (1969).J. Math. Phys.,10, 1.Google Scholar
  6. 6.
    Cormack, W. J., and Hall, G. S. (1979).Int. J. Theor. Phys.,18, 279.Google Scholar
  7. 7.
    Synge, J. L. (1960).Relativity: The General Theory. North-Holland, Amsterdam.Google Scholar
  8. 8.
    Pirani, F. A. E. (1956).Acta. Phys. Polon.,15, 389.Google Scholar
  9. 9.
    Eisenhart, L. P. (1966).Riemannian Geometry. Princeton University Press, Princeton, New Jersey.Google Scholar
  10. 10.
    Pirani, F. A. E. (1957).Phys. Rev.,105, 1089.Google Scholar
  11. 11.
    Hall, G. S., and McIntosh, C. B. G. (1983).Int. J. Theor. Phys.,22, 469.Google Scholar
  12. 12.
    McIntosh, C. B. G., and Halford, W. D. (1981).J. Phys. A.,14, 2331.Google Scholar
  13. 13.
    McIntosh, C. B. G., and Halford, W. D. (1982).J. Math. Phys.,23, 436.Google Scholar
  14. 14.
    Hall, G. S. (1983).Gen. Rel. Grav.,15, 581.Google Scholar
  15. 15.
    Ihrig, E. (1975).Int. J. Theor. Phys.,14, 23.Google Scholar
  16. 16.
    Hall. G. S. (1984).Gen. Rel. Grav. (to appear).Google Scholar
  17. 17.
    Ruh, B. (1982). Doctors der Mathematik dissertation, Eidgenoessischen Technischen Hochschule, Zurich.Google Scholar
  18. 18.
    Hall, G. S. (1982). In Proceedings of First International Arab Conference on Mathematics, Riyadh, Saudi Arabia. (to appear).Google Scholar
  19. 19.
    Collinson, C. D., and da Graça Lopes Rodrigues Vaz, E. (1982).Gen. Rel. Grav.,14, 5.Google Scholar
  20. 20.
    Kowalski, O. (1972).Math. Z.,125, 129.Google Scholar
  21. 21.
    Kulkarni, R. S. (1970).Ann. Math.,91, 311.Google Scholar
  22. 22.
    Hall, G. S. In preparation.Google Scholar
  23. 23.
    Tarig, N., and Tupper, B. O. J. (1977).Tensor,31, 42.Google Scholar
  24. 24.
    Hall, G. S. Submitted for publication.Google Scholar
  25. 25.
    Hall, G. S. (1976).J. Phys. A.,9, 541.Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • G. S. Hall
    • 1
  1. 1.Department of MathematicsUniversity of AberdeenAberdeenScotland UK

Personalised recommendations