Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 19, Issue 6, pp 691–703 | Cite as

Structural and functional consequences of galactolipids on thylakoid membrane organization

  • Sallie G. Sprague
Mini-Review

Abstract

Photosynthetic membranes of higher plant chloroplasts are composed primarily of polar, but uncharged, galactolipids unlike most mammalian membranes which contain large amounts of phosphatidylcholine. It is unclear what role(s) the galactolipids play in maintaining the differentiated thylakoid membranes, or in stabilizing the photosynthetically active enzyme complexes. Some of the membrane complexes show no lipid selectivity for maintaining structural or functional integrity. Others are poisoned or dissociated in the presence of high concentrations of a trace lipid class. The efficiency of energy transfer and the reconstitution of protein complexes into liposomes are dependent on the lipid class employed. The lipids are asymmetrically arranged along and across the thylakoid membranes but not as distinctly as the proteins.

Key words

Galactolipids photosynthesis chloroplast membranes structure function reconstitution fusion liposomes lipases 

Abbreviations

DGDG

digalactosyldiglyceride

MGDG

monogalactosyldiglyceride

SQDG

sulfoquinovosyldiglyceride

PG

phosphatidylglycerol

PC

phosphatidylcholine

PE

phosphatidylethanolamine

PSI

photosystem I

PSII

photosystem II

LHC

chlorophylla/b lightharvesting complex

cytb6f

cytochromeb6f complex

CF0/CF1

coupling factor ATPase

DCIP

2,6-dichlorophenolindophenol

LRa

galactolipase fromRhizopus arrhis

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allred, D. R., and Staehelin, L. A. (1985).Plant Physiol. 78, 199–202.Google Scholar
  2. Andersson, B., and Åkerlund, H.-E. (1978).Biochim. Biophys. Acta 503, 462–472.Google Scholar
  3. Andersson, B., and Anderson, J. M. (1980).Biochim. Biophys. Acta 593, 427–440.Google Scholar
  4. Barber, J. (1980).FEBS Lett. 118, 1–10.Google Scholar
  5. Bishop, D. G., Kendrick, J. R., Bayston, J. H., MacPherson, A. S., and Johns, S. R. (1980).Biochim. Biophys. Acta 602, 248–259.Google Scholar
  6. Brentel, I., Selstam, E., and Lindblom, G. (1985).Biochim. Biophys. Acta 812, 816–826.Google Scholar
  7. Carruthers, A., and Melchior, D. L. (1986).Trends Biochem. Sci. 11, 331–335.Google Scholar
  8. De Kruijff, B., Verkleij, A. J., Van Echteld, C. J. A., Gerritsen, W. J., Mombers, C., Noordam, P. C., and De Gier, J. (1979).Biochim. Biophys. Acta 555, 200–209.Google Scholar
  9. Douce, R., and Joyard, J. (1979).Adv. Bot. Res. 7, 1–116.Google Scholar
  10. Dunahay, T. G., and Staehelin, L. A. (1985).Plant Physiol. 78, 606–613.Google Scholar
  11. Dunahay, T. G., Staehelin, L. A., Seibert, M., Ogilvie, P. D., and Berg, S. P. (1984).Biochim. Biophys. Acta 764, 179–193.Google Scholar
  12. Duval, J. C., Trémolières, A., and Dubacq, J. P. (1979).FEBS Lett. 106, 414–418.Google Scholar
  13. Gounaris, K., and Barber, J. (1983).Trends Biochem. Sci. 8, 378–381.Google Scholar
  14. Gounaris, K., Brain, A. P. R., Quinn, P. J., and Williams, W. P. (1983a).FEBS Lett. 153, 47–52.Google Scholar
  15. Gounaris, K., Mannock, D. A., Sen, A., Brain, A. P. R., Williams, W. P., and Quinn, P. J. (1983b).Biochim. Biophys. Acta 732, 229–242.Google Scholar
  16. Gounaris, K., Sen, A., Brain, A. P. R., Quinn, P. J., and Williams, W. P. (1983c).Biochim. Biophys. Acta 728, 129–139.Google Scholar
  17. Gounaris, K., Sundby, C., Andersson, B., and Barber, J. (1983d).FEBS Lett. 156, 170–174.Google Scholar
  18. Gounaris, K., Whitford, D., and Barber, J. (1983e).FEBS Lett. 163, 230–234.Google Scholar
  19. Gounaris, K., Brain, A. P. R., Quinn, P. J., and Williams, W. P. (1984).Biochim. Biophys. Acta 766, 198–208.Google Scholar
  20. Hirayama, O., and Matsui, T. (1976).Biochim. Biophys. Acta 423, 540–547.Google Scholar
  21. Hirayama, O., and Nomotobori, T. (1978).Biochim. Biophys. Acta 502, 11–16.Google Scholar
  22. Ikegami, I. (1983).Biochim. Biophys. Acta 722, 492–497.Google Scholar
  23. Iwamoto, K., Sunamoto, J., Inoue, K., Endo, T., and Nojima, S. (1982).Biochim. Biophys. Acta 691, 44–51.Google Scholar
  24. Jacob, J. S., and Miller, K. R. (1986).J. Cell Biol. 103, 1337–1347.Google Scholar
  25. Jordan, B. R., Chow, W.-S., and Baker, A. J. (1983).Biochim. Biophys. Acta 725, 77–86.Google Scholar
  26. Kyle, D. J., Staehelin, L. A., and Arntzen, C. J. (1983).Arch. Biochem. Biophys. 222, 527–541.Google Scholar
  27. Larkum, A. W. D., and Anderson, J. M. (1982).Biochim. Biophys. Acta 679, 410–412.Google Scholar
  28. Madden, T. D., and Cullis, P. R. (1982).Biochim. Biophys. Acta 684, 149–153.Google Scholar
  29. McDonnel, A., and Staehelin, L. A. (1980).J. Cell Biol. 84, 40–56.Google Scholar
  30. Michalski, W. P., and Kaniuga, Z. (1980).Biochim. Biophys. Acta 589, 84–99.Google Scholar
  31. Miller, K. R., and Staehelin, L. A. (1976).J. Cell Biol. 68, 30–47.Google Scholar
  32. Miller, R. G. (1980).Nature (London)287, 166–167.Google Scholar
  33. Millner, P. A., Grouzis, J. P., Chapman, D. J., and Barber, J. (1983).Biochim. Biophys. Acta 722, 331–340.Google Scholar
  34. Mörschel, E., and Staehelin, L. A. (1983).J. Cell Biol. 97, 301–310.Google Scholar
  35. Mullet, J. E., and Arntzen, C. J. (1980).Biochim. Biophys. Acta 589, 100–117.Google Scholar
  36. Mullet, J. E., Burke, J. J., and Arntzen, C. J. (1980).Plant Physiol. 65, 814–822.Google Scholar
  37. Murphy, D. J. (1982).FEBS Lett. 150, 19–26.Google Scholar
  38. Murphy, D. J. (1986a).Biochim. Biophys. Acta 864, 33–94.Google Scholar
  39. Murphy, D. J. (1986b). InEncyclopedia of Plant Physiology [new series], Vol. 19 (Staehelin, L. A., and Arntzen, C. J., eds.), Springer-Verlag, Berlin, pp. 713–726.Google Scholar
  40. Murphy, D. J., and Woodrow, I. E. (1983a).Biochim. Biophys. Acta 725, 104–112.Google Scholar
  41. Murphy, D. J., and Woodrow, I. E. (1983b). InBiosynthesis and Function of Plant Lipids (Thomson, W. W., Mudd, J. B., and Gibbs, M., eds.), Amer. Soc. Plant Physiol., Rockville, Maryland, pp. 104–125.Google Scholar
  42. Murphy, D. J., Crowther, D., and Woodrow, I. E. (1984).FEBS Lett. 165, 151–155.Google Scholar
  43. Quinn, P. J., and Williams, W. P. (1983).Biochim. Biophys. Acta 737, 223–266.Google Scholar
  44. Rawyler, A., and Siegenthaler, P. A. (1980).Eur. J. Biochem. 110, 179–187.Google Scholar
  45. Rawyler, A., and Siegenthaler, P. A. (1981a).Biochim. Biophys. Acta 635, 348–358.Google Scholar
  46. Rawyler, A., and Siegenthaler, P. A. (1981b).Biochim. Biophys. Acta 638, 30–39.Google Scholar
  47. Rawyler, A., and Siegenthaler, P. A. (1985).Biochim. Biophys. Acta 815, 287–298.Google Scholar
  48. Ryrie, I. J. (1983).Eur. J. Biochem. 137, 205–213.Google Scholar
  49. Ryrie, I. J. (1986). InEncyclopedia of Plant Physiology [new series], Vol. 19 (Staehelin, L. A., and Arntzen, C. J., eds.), Springer-Verlag, Berlin, pp. 675–682.Google Scholar
  50. Ryrie, I. J., and Fuad, N. (1982).Arch. Biochem. Biophys. 214, 475–488.Google Scholar
  51. Ryrie, I. J., Anderson, J. M., and Goodchild, D. J. (1980).Eur. J. Biochem. 107, 345–354.Google Scholar
  52. Sakai, W. S., Yamamoto, H. Y., Miyazaki, T., and Ross, J. W. (1983).FEBS Lett. 158, 203–207.Google Scholar
  53. Schneider, H., Lemasters, J. J., Hochli, M., and Hackenbrock, C. R. (1980a).Proc. Natl. Acad. Sci. USA 77, 442–446.Google Scholar
  54. Schneider, H., Lemasters, J. J., Hochli, M., and Hackenbrock, C. R. (1980b).J. Biol. Chem. 255, 3748–3756.Google Scholar
  55. Sen, A., Williams, W. P., Brain, A. P. R., Dickens, M. J., and Quinn, P. J. (1981a).Nature (London)293, 488–490.Google Scholar
  56. Sen, A., Williams, W. P., and Quinn, P. J. (1981b).Biochim. Biophys. Acta 663, 380–389.Google Scholar
  57. Sen, A., Williams, W. P., Brain, A. P. R., and Quinn, P. J. (1982).Biochim. Biophys. Acta 685, 297–306.Google Scholar
  58. Shipley, G. G., Green, J. P., and Nichols, B. W. (1973).Biochim. Biophys. Acta 311, 531–544.Google Scholar
  59. Siefermann-Harms, D., Ross, J. W., Kaneshiro, K. H., and Yamamoto, H. Y. (1982).FEBS Lett. 149, 191–196.Google Scholar
  60. Siegel, C. O., Jordan, A. E., and Miller, K. R. (1981).J. Cell Biol. 91, 113–124.Google Scholar
  61. Siegenthaler, P. A., and Giroud, C. (1987). InProgress in Photosynthesis Research (Biggens, J., ed.), Martinus Nijhoff Publishers, Dordrecht, pp. 213–216.Google Scholar
  62. Siegenthaler, P. A., and Rawyler, A. (1986). InEncyclopedia of Plant Physiology [new series], Vol. 19 (Staehelin, L. A., and Arntzen, C. J., eds.), Springer-Verlag, Berlin, pp. 693–705.Google Scholar
  63. Sprague, S. G., and Staehelin, L. A. (1983). InBiosynthesis and Function of Plant Lipids (Thomson, W. W., Mudd, J. B., and Gibbs, M., eds.), Amer. Soc. Plant Physiol., Rockville, Maryland, pp. 144–159.Google Scholar
  64. Sprague, S. G., and Staehelin, L. A. (1984).Biochim. Biophys. Acta 777, 306–322.Google Scholar
  65. Sprague, S. G., Camm, E. L., Green, B. R., and Staehelin, L. A. (1985).J. Cell Biol. 100, 552–557.Google Scholar
  66. Staehelin, L. A. (1986). InEncyclopedia of Plant Physiology [new series], Vol. 19 (Staehelin, L. A., and Arntzen, C. J., eds.), Springer-Verlag, Berlin, pp. 1–84.Google Scholar
  67. Staehelin, L. A., and Arntzen, C. J. (1983).J. Cell Biol. 97, 1327–1337.Google Scholar
  68. Wellburn, A. R. (1977).Planta 135, 191–198.Google Scholar
  69. Wieslander, A., Christiansson, A., Rilfors, L., and Lindblom, G. (1980).Biochemistry 19, 3650–3655.Google Scholar
  70. Williams, W. P., and Dominy, P. J. (1987). InProgress in Photosynthesis Research, Vol. II (Biggens, J., ed.), Martinus Nijhoff Publishers, Dordrecht, pp. 201–214.Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Sallie G. Sprague
    • 1
  1. 1.Department of BiochemistryWest Virginia University, School of MedicineMorgantown

Personalised recommendations