Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 23, Issue 2, pp 303–319 | Cite as

The reactions of the oxidase and reductases ofParacoccus denitrificans with cytochromesc

  • Lucile Smith
  • Helen C. Davies
Mini-Review

Abstract

Electron transport in theParacoccus denitrificans respiratory chain system is considerably more rapid when it includes the membrane-bound cytochromec552 than with either solubleParacoccus c550 or bovine cytochromec; a pool function for cytochromec is not necessary. Low concentrations ofParacoccus or bovine cytochromec stimulate the oxidase activity. This observation could explain the multiphasic Scatchard plots which are obtained. A negatively charged area on the “back side” ofParacoccus c which is not present in mitochondrialc could be a control mechanism forParacoccus reactions.Paracoccus oxidase and reductase reactions with bovinec show the same properties as mammalian systems; and this is true ofParacoccus oxidase reactions with its own soluble cytochromec if added polycation masks the negatively charged area. Evidence for different oxidase and reductase reaction sites on cytochromec include: (1) stimulation of the oxidase but not reductase by a polycation; (2) differences in the inhibition of the oxidase and reductases by monoclonal antibodies toParacoccus cytochromec; and (3) reaction of another bacterial cytochromec withParacoccus reductases but not oxidase. Rapid electron transport occurs in cytochromec-less mutants ofParacoccus, suggesting that the reactions result from collision of diffusing complexes.

Key Words

Electron transport respiratory chain cytochromec cytochromec552 cytochromeaa3 cytochromec oxidase cytochromec reductase Paracoccus denitrificans 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albracht, S. P. J., van Verseveld, H. W., Hagen, W. R., and Kalkman, M. L. (1980).Biochim. Biophys. Acta 593, 173–186.Google Scholar
  2. Alefounder, P. R., and Ferguson, S. J. (1980).Biochem. J. 192, 231–240.Google Scholar
  3. Alefounder, P. R., and Ferguson, S. J. (1981).Biochem. Biophys. Res. Commun. 98, 778–784.Google Scholar
  4. Berry, E. A., and Trumpower, B. L. (1985).J. Biol. Chem. 260, 2458–2467.Google Scholar
  5. Bickar, D., Lehninger, A. L. and Turrens, J. (1985). InAchievements and Perspectives in Mitochondrial Research, Vol. I:Bioenergetics (Quagliariello, E.,et al., eds.), Elsevier, New York, pp. 367–375.Google Scholar
  6. Bolgiano, B., Smith, L., and Davies, H. C. (1988).Biochim. Biophys. Acta 933, 341–350.Google Scholar
  7. Bolgiano, B., Smith, L., and Davies, H. C. (1989).Biochim. Biophys. Acta 973, 227–234.Google Scholar
  8. Bosma, G., Braster, M., Stouthamer, A. H. and van Verseveld, H. W. (1987a).Eur. J. Biochem. 165, 657–663.Google Scholar
  9. Bosma, G., Braster, M., Stouthamer, A. H., and van Verseveld, H. W. (1987b).Eur. J. Biochem. 165, 665–670.Google Scholar
  10. Cox, J. C., Ingledew, W. J., Haddock, B. A., and Lawford, H. G. (1978).FEBS Lett. 3, 261–265.Google Scholar
  11. Daldal, F., Cheng, S., Applebaum, J., Davidson, E., and Prince, R. C. (1986).Proc. Natl. Acad. Sci. USA 83, 2012–2016.Google Scholar
  12. Daldal, F. (1988).J. Bacteriol. 170, 2388–2391.Google Scholar
  13. Davidson, V. L., and Kumar, M. A. (1989).FEBS Lett. 245, 271–273.Google Scholar
  14. Davies, H. C., Smith, L., and Wasserman, R. (1964).Biochim. Biophys. Acta 85, 238–246.Google Scholar
  15. Davies, H. C., Smith, L., and Nava, M. E. (1983).Biochim. Biophys. Acta 725, 238–245.Google Scholar
  16. Erecinska, M., Davis, J. S., and Wilson, D. (1979).Arch. Biochem. Biophys. 197, 463–469.Google Scholar
  17. Ferguson-Miller, S., Brautigan, D., and Margoliash, E. (1976).J. Biol. Chem. 251, 1104–1115.Google Scholar
  18. Haltia, T., Puustinen, A., and Finel, M. (1988).Eur. J. Biochem. 172, 543–546.Google Scholar
  19. Hindahl, M. S., Wee, S., Banks, D. H., Tsang, J. C., and Wilkinson, B. J. (1981).Arch. Microbiol. 130, 307–311.Google Scholar
  20. Hochli, M., Hochli, L., and Hackenbrock, C. R. (1985).Eur. J. Cell Biol. 38, 1–5.Google Scholar
  21. Hochman, J., Ferguson-Miller, S., and Schindler, M. (1985).Biochemistry 24, 2509–2516.Google Scholar
  22. Hubbard, J. A. M., Hughes, M. N., Poole, R. K., and Williams, H. D. (1990).FEMS Lett. 67, 197–200.Google Scholar
  23. Husain, M., and Davidson, V. L. (1986).J. Biol. Chem. 261, 8577–8580.Google Scholar
  24. John, P., and Whatley, F. R. (1975).Nature (London)254, 495–498.Google Scholar
  25. Joliot, P., Vermeglio, A., and Joliot, A. (1989).Biochim. Biophys. Acta 975, 336–345.Google Scholar
  26. Kennelly, P. J., Timkovich, R., and Cusanovich, M. A. (1981).J. Mol. Biol. 145, 583–602.Google Scholar
  27. Koppenol, W. H., and Margoliash, E. M. (1982).J. Biol. Chem. 257, 4426–4437.Google Scholar
  28. Kornblatt, J. A., and Luu, H. A. (1986).Eur. J. Biochem. 159, 407–413.Google Scholar
  29. Kuo, L.-M., Davies, H. C., and Smith, L. (1984).Biochim. Biophys. Acta 766, 472–482.Google Scholar
  30. Kuo, L.-M., Davies, H. C., and Smith, L. (1985).Biochim. Biophys. Acta 809, 388–395.Google Scholar
  31. Kuo, L.-M., Davies, H. C., and Smith, L. (1986).Biochim. Biophys. Acta 848, 247–255.Google Scholar
  32. Lawford, H. G., Cox, J. C., Garland, P. B., and Haddock, B. A. (1976).FEBS Lett. 64, 369–374.Google Scholar
  33. Lorence, R. M., Yoshida, T., Findling, K. L., and Fee, J. A. (1981).Biochem. Biophys. Res. Commun. 99, 591–599.Google Scholar
  34. Ludwig, B. (1987).FEMS Microbiol. Rev. 46, 41–56.Google Scholar
  35. Ludwig, B., and Gibson, Q. H. (1981).J. Biol. Chem. 256, 10092–10098.Google Scholar
  36. Ludwig, B., and Schatz, G. (1980).Proc. Natl. Acad. Sci. USA 77, 196–200.Google Scholar
  37. Ludwig, B., Suda, K., and Cerletti, N. (1983).Eur. J. Biochem. 197, 597–602.Google Scholar
  38. Margoliash, E., and Schejter, A. (1966).Adv. Protein Chem. 21, 113–286.Google Scholar
  39. Matsuura, K., Fukushima, A., Shimada, K., and Satoh, T. (1988).FEBS Lett. 235, 21–25.Google Scholar
  40. Minnaert, K. (1961).Biochim. Biophys. Acta 50, 23–34.Google Scholar
  41. Probst, I., and Schlegel, H. G. (1976).Biochim. Biophys. Acta 440, 412–428.Google Scholar
  42. Reichardt, J. K. V., and Gibson, Q. H. (1983).J. Biol. Chem. 238, 1504–1507.Google Scholar
  43. Sapshead, L. M., and Wimpenny, J. W. T. (1972).Biochim. Biophys. Acta 267, 388–397.Google Scholar
  44. Scholes, P. B., and Smith, L. (1968a).Biochim. Biophys. Acta 153, 350–362.Google Scholar
  45. Scholes, P. B., and Smith, L. (1968b).Biochim. Biophys. Acta 153, 363–375.Google Scholar
  46. Scholes, P. B., McLain, G., and Smith, L. (1971).Biochemistry 10, 2072–2076.Google Scholar
  47. Smith, L. (1954).Arch. Biochem. Biophys. 50, 315–321.Google Scholar
  48. Smith, L., and Conrad, H. (1956).Arch. Biochem. Biophys. 63, 403–413.Google Scholar
  49. Smith, L., Davies, H. C., and Nava, M. E. (1974).J. Biol. Chem. 249, 2904–2910.Google Scholar
  50. Smith, L., Davies, H. C., and Nava, M. E. (1976).Biochemistry 15, 5827–5831.Google Scholar
  51. Smith, L., Davies, H. C. and Nava, M. E. (1979). InCytochrome Oxidase (King, T. E.,et al., eds.), Elsevier, Amsterdam, pp. 293–304.Google Scholar
  52. Sone, N., Sekimachi, M., and Kutoh, E. (1987).J. Biol. Chem. 262, 15386–15391.Google Scholar
  53. Timkovich, R., and Dickerson, R. E. (1976).J. Biol. Chem. 251, 4033–4046.Google Scholar
  54. van Spanning, R. J. M., Wansell, C., Harms, N., Oltmann, L. F., and Stouthamer, A. H. (1990).J. Bacteriol. 172, 986–996.Google Scholar
  55. van Verseveld, H. W., Krab, K., Stouthamer, A. H. (1981).Biochim. Biophys. Acta 635, 525–534.Google Scholar
  56. van Verseveld, H. W., Braster, M., Boogerd, F. C., Chance, B., and Stouthamer, A. H. (1983).Arch. Microbiol. 135, 229–236.Google Scholar
  57. Waring, A., Davis, J. S., Chance, B., and Erecinska, M. (1980).J. Biol. Chem. 255, 6212–6218.Google Scholar
  58. Willison, J. C., and John, P. (1979).J. Gen. Microbiol. 115, 443–450.Google Scholar
  59. Yang, X., and Trumpower, B. L. (1986).J. Biol. Chem. 261, 12282–12289.Google Scholar
  60. Zhu, Q.-S., and Beattie, D. S. (1988).J. Biol. Chem. 263, 193–199.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Lucile Smith
    • 1
  • Helen C. Davies
    • 2
  1. 1.Department of BiochemistryDartmouth Medical SchoolHanover
  2. 2.Department of MicrobiologyUniversity of Pennsylvania School of MedicinePhiladelphia

Personalised recommendations