General Relativity and Gravitation

, Volume 15, Issue 12, pp 1139–1147 | Cite as

Black holes and the nature of quantum gravity

  • Frank J. Tipler
Research Articles


Hawking and Wald have recently argued that the process of quantum black hole evaporation requires the violation of the fundamental physical law which asserts that the time evolution of quantum states is governed by unitary operators. I show this violation can be avoided by a change in the global boundary conditions. It is remotely possible that astronomical observation could establish whether or not the universe has these boundary conditions in which quantum mechanical time evolution is governed by unitary operators.


Boundary Condition Evaporation Black Hole Time Evolution Quantum State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hawking, S. W. (1976).Phys. Rev. D,14, 2460.Google Scholar
  2. 2.
    Wald, R. M. (1980).Phys. Rev. D,21, 2742.Google Scholar
  3. 3.
    Wald, R. M. (1975).Commun. Math. Phys.,45, 9.Google Scholar
  4. 4.
    Page, D. N. (1980).Phys. Rev. Lett.,44, 301.Google Scholar
  5. 5.
    Page, D. N. (1982).Gen. Rel. Grav.,14, 299.Google Scholar
  6. 6.
    Wald, R. M. (1981). InQuantum Gravity 2, Isham, C. J., Penrose, R., and Sciama, D. W., eds. (Oxford University Press, Oxford).Google Scholar
  7. 7.
    Wald, R. M. (1980).J. Math. Phys.,21, 2802.Google Scholar
  8. 8.
    Misner, C. W., and Taub, A. H. (1969).Sov. Phys. JETP,28, 122.Google Scholar
  9. 9.
    York, Jr., J. W. (1972).Phys. Rev. Lett.,28, 1082.Google Scholar
  10. 10.
    Marsden, J. E., and Tipler, F. J. (1980).Phys. Rep.,66, 109.Google Scholar
  11. 11.
    Isenberg, J., and Wheeler, J. A. (1979). Inertia here is fixed by mass-energy there in every W-model universe, inEinstein Centenary Volume, de Finis, ed. (Johnson Reprints, New York).Google Scholar
  12. 12.
    Tipler, F. J. (1982). Preprint, Tulane University, March 1982.Google Scholar
  13. 13.
    DeWitt, B. S. (1981). InQuantum Gravity 2, edited by Isham, C. J., Penrose, R., and Sciama, D. W., eds. (Oxford University Press, Oxford).Google Scholar
  14. 14.
    Zel'dovich, Ya. B. (1976).Phys. Lett.,59A, 254.Google Scholar
  15. 15.
    Zel'dovich, Ya. B. (1977).Sov. Phys. JETP,45, 9.Google Scholar
  16. 16.
    Gross, D. J., Perry, M. J., and Yaffe, L. G.Phys. Rev. D,25, 330.Google Scholar
  17. 17.
    Carter, B. (1968).Phys. Rev.,174, 1559.Google Scholar
  18. 18.
    DeWitt, B. (1981).Phys. Rev. Lett.,47, 1647.Google Scholar
  19. 19.
    Tipler, F. J., Clarke, C. J. S., and Ellis, G. F. R. (1980). InGeneral Relativity and Gravitation: One Hundred Years after the Birth of Albert Einstein, Held, A., ed. (Plenum Press, New York).Google Scholar
  20. 20.
    Guth, A. H. (1981).Phys. Rev.,D23, 347.Google Scholar
  21. 21.
    DeWitt, B. S., and Graham, N. (1973).The Many-Worlds Interpretation of Quantum Mechanics (Princeton University Press, Princeton).Google Scholar
  22. 22.
    Jammer, M. (1974).The Philosophy of Quantum Mechanics (Wiley, New York).Google Scholar
  23. 23.
    Prigogine, I. (1978).Science,201, 777.Google Scholar
  24. 24.
    Prigogine, I. (1980).From Being to Becoming (Freeman, San Francisco).Google Scholar
  25. 25.
    Penrose, R. (1978). InTheoretical Principles in Astrophysics and Relativity ed. Lebovitz, N. R., Reid, W. H., and Vandervoort, P. O., eds. (University of Chicago Press, Chicago), p. 236.Google Scholar
  26. 26.
    Lake, K. (1982).Phys. Rev.,D26, 518.Google Scholar
  27. 27.
    Hawking, S. W., and Ellis, G. F. R. (1973).The Large-Scale Structure of Space-Time (Cambridge University Press, Cambridge).Google Scholar
  28. 28.
    Hawking, S. W. (1978).Nuc. Phys.,B144, 349.Google Scholar
  29. 29.
    Hawking, S. W., Page, D. N., and Pope, C. N. (1979).Phys. Lett.,86B, 175.Google Scholar
  30. 30.
    Hawking, S. W., Page, D. N., and Pope, C. N. (1980).Nucl. Phys.,B170, 283.Google Scholar
  31. 31.
    Boone, W. W., Haken, W., and Poénaru, V. (1980). InContributions to Mathematical Logic, Schmidt, H. A., ed. (North-Holland, Amsterdam).Google Scholar
  32. 32.
    Hawking, S. W. (1982).Commun. Math. Phys.,87, 395.Google Scholar
  33. 33.
    Porter, N. A., and Weekes, T. C. (1978).Mon. Not. R. Astron. Soc.,183, 205.Google Scholar
  34. 34.
    Ellis, G. F. R., and King, A. R. (1974).Commun. Math. Phys.,38, 199.Google Scholar
  35. 35.
    Ellis, G. F. R. (1975).Quar. J. R. Astron. Soc.,16, 246.Google Scholar
  36. 36.
    Bardeen, J. M., Steinhardt, P. J., and Turner, M. S. (1983).Phys. Rev.,D28, 679.Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • Frank J. Tipler
    • 1
    • 2
  1. 1.Department of Mathematics and Department of PhysicsTulane UniversityNew Orleans
  2. 2.Department of AstronomyUniversity of California at BerkeleyBerkeley

Personalised recommendations