Letters in Mathematical Physics

, Volume 29, Issue 3, pp 215–217 | Cite as

A borel-weil-bott approach to representations of sl q (2, ℂ)

  • Davide Franco
  • Cesare Reina


We use a quite concrete and simple realization of sl q (2, ℂ) involving finite difference operators. We interpret them as derivations (in the noncommutative sense) on a suitable graded algebra, which gives rise to the ‘noncommutative’ scheme ℙ1 II ℙ1* as the counterpart of the standard ℙ1 = Sl(2, ℂ)/B.

Mathematics Subject Classifications (1991)

81R50 16W30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Biedenharn, L. C. and Lohe, M. A.,Comm. Math. Phys. 146, 483, (1992).Google Scholar
  2. 2.
    Connes, A.,Geometrie non commutative, InterEditions, Paris, 1990.Google Scholar
  3. 3.
    Fulton, W. and Harris, J.,Representation Theory, Springer-Verlag, New York, 1991.Google Scholar
  4. 4.
    Hartshorne, R.,Algebraic Geometry, Springer-Verlag, New York.Google Scholar
  5. 5.
    Varilly, J. C. and Gracia-Bondia, J. M., Connes' noncommutative differential geometry and the standard model, Preprint.Google Scholar
  6. 6.
    Wallach, N. R.,Harmonic Analysis on Homogeneous Spaces, Dekker, New York, 1973.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Davide Franco
    • 1
  • Cesare Reina
    • 1
  1. 1.SISSATriesteItaly

Personalised recommendations