General Relativity and Gravitation

, Volume 19, Issue 5, pp 465–479 | Cite as

Nonlinear gravitational Lagrangians

  • G. Magnano
  • M. Ferraris
  • M. Francaviglia
Research Articles


“Alternative gravitational theories” based on Lagrangian densities that depend in a nonlinear way on the Ricci tensor of a metric are considered. It is shown that, provided certain weak regularity conditions are met, any such theory is equivalent, from the Hamiltonian point of view, to the standard Einstein theory for a new metric (which, roughly speaking, coincides with the momentum canonically conjugated to the original metric), interacting with external matterfields whose nature depends on the original Lagrangian density.


Differential Geometry Regularity Condition Lagrangian Density Ricci Tensor Gravitational Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kerner, R. (1982).Gen. Rel. Grav.,14(5), 453–469.Google Scholar
  2. 2.
    Hehl, F. W., Nitsch, J., and Von Der Heyde, P. (1980). InGeneral Relativity and Gravitation. One Hundred Years after the Birth of Albert Einstein, vol. 1, A. Held, (Plenum Press, New York), pp. 329–355.Google Scholar
  3. 3.
    Weyl, H. (1918).Raum-Zeit-Materie, 1st–3rd ed. (Springer, Berlin); (1950). 4th ed. (Dover, New York).Google Scholar
  4. 4.
    Ferraris, M., Francaviglia, M., and Reina, C. (1984). InActas de los Encuentros Relativistas Españoles 1983 (Servei de Publicacions, Palma de Mallorca), p. 153–184.Google Scholar
  5. 4a.
    Ferraris, M., Francaviglia, M., and Reina, C. (1984). InAtti del V° Convegno Nazionale di Relatività Generale e Fisica della Gravitazione, M. Anile, S. Motta, S. Pluchino, eds. (Tipografia Universitaria, Catania).Google Scholar
  6. 5.
    Ferraris, M. (1984). InProceedings of the Journées Relativistes 1983, S. Benenti, M. Ferraris, M. Francaviglia, eds. (Tecnoprint, Bologna) p. 125–153.Google Scholar
  7. 6.
    Ferraris, M. and Kijowski, J. (1983).Rend. Sem. Mat. Univ. Politec. Torino,43, 169–201; (1982).Gen. Rel. Grav.,14, 2, 165–180; (1981).Lett. Math. Phys.,5, 2, 127–135; (1982).Gen. Rel. Grav.,14, 1, 37–47.Google Scholar
  8. 7.
    Martellini, M. (1983).Phys. Rev. Lett.,51, 3, 152–155; (1984).Phys. Rev.,D29, 12, 2746–2755.Google Scholar
  9. 8.
    Eddington, A. S. (1924).The Mathematical Theory of Relativity, 2nd ed. (Cambridge University Press, Cambridge).Google Scholar
  10. 9.
    Einstein, A. (1923).Sitzungsber. Preuss. Akad. Wiss. (Berlin), 137–140.Google Scholar
  11. 10.
    Ferraris, M. (1986). InAtti del 6° Convegno Nazionale di Relatività Generale e Fisica della Gravitazione, M. Modugno, ed. (Tecnoprint, Bologna).Google Scholar
  12. 11.
    Higgs, P. W. (1959).Nuovo Cim.,11, 6, 816–820.Google Scholar
  13. 12.
    Kijowski, J. (1978).Gen. Rel. Grav.,9, 10, 857–877; (1979).A Symplectic Framework for Field Theories, Lecture Notes in Physics 107 (Springer-Verlag, Berlin).Google Scholar
  14. 13.
    Magnano, G., Ferraris, M., and Francaviglia, M., (1987). (preprint).Google Scholar
  15. 14.
    Weinberg, S. (1972).Gravitation and Cosmology (John Wiley & Sons Inc., New York).Google Scholar
  16. 15.
    Teyssandier, P., and Tourrenc, Ph. (1983).J. Math. Phys.,24, 12, 2793–2799.Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • G. Magnano
    • 1
  • M. Ferraris
    • 1
  • M. Francaviglia
    • 1
  1. 1.Istituto di Fisica Matematica “J.-L. Lagrange”Università di TorinoTorinoItaly

Personalised recommendations