General Relativity and Gravitation

, Volume 10, Issue 5, pp 377–393

The center of mass in general relativity

  • R. Schattner
Research Articles

Abstract

In Dixon's theory of the dynamics of extended bodies in metric theories of gravity, a definition of a center-of-mass line is proposed. We prove the existence and uniqueness of a zero-linear-momentum vector field. Using this vector field we show the existence of a center-of-mass line which is a smooth timelike curve contained in a convex hull of the world-tube of the body.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dixon, W. G. (1970).Proc. R. Soc. London A,314, 499.Google Scholar
  2. 2.
    Dixon, W. G. (1970).Proc. R. Soc. London A,319, 509.Google Scholar
  3. 3.
    Dixon, W. G. (1973).Gen. Rel. Grav.,4, 199.Google Scholar
  4. 4.
    Dixon, W. G. (1974).Philos. Trans. R. Soc. London A,277, 59.Google Scholar
  5. 5.
    Dixon, W. G. (1976). Varenna Lectures (to appear).Google Scholar
  6. 6.
    Ehlers, J., and Rudolph, E. (1977).Gen. Rel. Grav.,8, 197.Google Scholar
  7. 7.
    Synge, J. L. (1956).Relativity: The Special Theory (North-Holland, Amsterdam).Google Scholar
  8. 8.
    Møller, C. (1949).Commun. Dublin Inst Adv. Stud. A5, 1.Google Scholar
  9. 9.
    Pryce, M. H. L. (1948).Proc. R. Soc. London A,195, 62.Google Scholar
  10. 10.
    Schild, A. (1967). pp. 17–20 inLectures on General Relativity, J. Ehlers (Ed.), Vol. 8 ofLectures in Applied Mathematics, American Mathematical Society.Google Scholar
  11. 11.
    Beiglböck, W. (1967).Commun. Math. Phys. 5, 106.Google Scholar
  12. 12.
    Madore, J. (1969).Ann. Inst. Henri Poincaré,11, 221.Google Scholar
  13. 13.
    Synge, J. L. (1971).Relativity: The General Theory (North-Holland, Amsterdam).Google Scholar
  14. 14.
    DeWitt, B. S., and Brehme, R. W. (1960).Ann. Phys. (N.Y.),9, 220.Google Scholar
  15. 15.
    Hawking, S. W., and Ellis, G. F. R. (1973).The Large Scale Structure of Space-Time (Cambridge, University Press, Cambridge).Google Scholar
  16. 16.
    Ehlers, J. (1972). “Relativity, Astrophysics and Cosmology,” p. 70 inSurvey of General Relativity Theory, W. Israel (Ed.), Proceedings of Summer School at Banff Centre, Canadian Physical Society.Google Scholar
  17. 17.
    Schattner, R. (1977).The Center of Mass in General Relativity (Diplomarbeit, University of Munich), MPI-PAE/Astro 122, Munich.Google Scholar
  18. 18.
    Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1971).Gravitation (W. H. Freeman, San Francisco).Google Scholar
  19. 19.
    Schubert, H. (1964).Topologie (B. G. Teubner Verlagsgesellschaft, Stuttgart).Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • R. Schattner
    • 1
  1. 1.Max-Planck-Institut für Physik und AstrophysikMünchen

Personalised recommendations