General Relativity and Gravitation

, Volume 24, Issue 5, pp 551–574 | Cite as

Physical interpretation of vacuum solutions of Einstein's equations. Part I. Time-independent solutions

  • W. B. Bonnor
Research Articles


This article is a review of interpretations which have been given to some well known solutions of the vacuum equations. Special attention is paid to those of Schwarzschild, Curzon and Kerr, and it is argued that the bizarre topologies they have been endowed with are physically unrealistic. Among others discussed are the two-centres solution of Bach and Weyl, the NUT solution, and solutions for an infinite line-mass, both static and rotating.


Differential Geometry Physical Interpretation Vacuum Solution Vacuum Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kramer, D., Stephani, H., MacCallum, M. A. H., and Herlt, E. (1980).Exact Solutions of Einstein's Field Equations (Cambridge University Press, Cambridge).Google Scholar
  2. 2.
    Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973).Gravitation (W. H. Freeman, San Francisco).Google Scholar
  3. 3.
    Einstein, A., and Rosen, N. (1935).Phys. Rev 48, 73.Google Scholar
  4. 4.
    Lynden-Bell, D., and Katz, J. (1990).Mon. Not. R. Astron. Soc. 247, 651.Google Scholar
  5. 5.
    Gautreau, R. (1980).Nuovo Cimento 56B, 49.Google Scholar
  6. 6.
    Hawking, S. W., and Ellis, G. F. R. (1973).The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge).Google Scholar
  7. 7.
    Bel, L. (1969).J. Math. Phys. 10, 1501.Google Scholar
  8. 8.
    Cooperstock, F. I., and Junevicus, G. J. G. (1973).Nuovo Cimento 16B, 387.Google Scholar
  9. 9.
    McCrea, W. H. (1964).Astrophys. Norvegica 9, 89.Google Scholar
  10. 10.
    Stachel, J. (1968).Phys. Lett. 27A, 60.Google Scholar
  11. 11.
    Gautreau, R., and Anderson, J. L. (1967).Phys. Lett. 25A, 291.Google Scholar
  12. 12.
    Cooperstock, F. I., and Junevicus, G. J. G. (1974).Int. J. Theor. Phys. 9, 59.Google Scholar
  13. 13.
    Scott, S. M., and Szekeres, P. (1986).Gen. Rel. Grav. 18, 557.Google Scholar
  14. 14.
    Hernandez, W. C. (1967).Phys. Rev. 153, 1359.Google Scholar
  15. 15.
    Marek, J. J. J. (1967).Phys. Rev. 163, 1373.Google Scholar
  16. 16.
    Darmois, G. (1927).Mémorial des Sciences Mathematiques (Gauthier-Villars, Paris), Fasc. 25.Google Scholar
  17. 17.
    Erez, G., and Rosen, N. (1959).Bull. Res. Council Israel 8F, 47.Google Scholar
  18. 18.
    Zipoy, D. M. (1966).J. Math. Phys. 7, 1137.Google Scholar
  19. 19.
    Voorhees, B. H. (1970).Phys. Rev. D2, 2119.Google Scholar
  20. 20.
    Esposito, F. P., and Witten, L. (1975).Phys. Lett. 58B, 357.Google Scholar
  21. 21.
    Papadopoulos, D., Stewart, B. W., and Witten, L. (1981).Phys. Rev. D24, 320.Google Scholar
  22. 22.
    Stewart, B. W., Papadopoulos, D., Witten, L., Berezdivin, R., Herrera, L. (1982).Gen. Rel. Grav. 14, 97.Google Scholar
  23. 23.
    Bonnor, W. B., and Sackfeild, A. (1968).Commun. Math. Phys. 8, 338.Google Scholar
  24. 24.
    Morgan, T., and Morgan, L. (1969).Phys. Rev. 183, 1097; (1970).Phys. Rev. D 2, 2756.Google Scholar
  25. 25.
    Lynden-Bell, D., and Pineault, S. (1978).Mon. Not. R. Astron. Soc. 185, 679; (1978).ibid. 185, 695.Google Scholar
  26. 26.
    Lemos, J. P. S. (1989).Class. Quant. Grav. 6, 1219.Google Scholar
  27. 27.
    Chamorro, A., Gregory, R., and Stewart, J. M. (1987).Proc. Roy. Soc. Lond. A413, 251.Google Scholar
  28. 28.
    Bach, R., and Weyl, H. (1922).Math. Z. 13, 134.Google Scholar
  29. 29.
    Israel, W. (1977).Phys. Rev. D 15, 935.Google Scholar
  30. 30.
    Katz, A. (1968).J. Math. Phys. 9, 983.Google Scholar
  31. 31.
    Kinnersley, W., and Walker, M. (1970).Phys. Rev. D 2, 1359.Google Scholar
  32. 32.
    Farhoosh, H., and Zimmerman, R. L. (1980).Phys. Rev. D 21, 317.Google Scholar
  33. 33.
    Bonnor, W. B. (1983).Gen. Rel. Grav. 15, 535.Google Scholar
  34. 34.
    Bonnor, W. B., and Martins, M. A. P. (1991).Class. Quant. Grav. 8, 727.Google Scholar
  35. 35.
    Evans, A. B. (1977).J. Phys. A 10, 1305.Google Scholar
  36. 36.
    Bonnor, W. B. (1979).J. Phys. A 12, 847.Google Scholar
  37. 37.
    Kinnersley, W. (1969).J. Math. Phys. 10, 1195.Google Scholar
  38. 38.
    Lathrop, J. D., and Orsene, M. S. (1980).J. Math. Phys. 21, 152.Google Scholar
  39. 39.
    Stela, J., and Kramer, D. (1990).Acta Physica Polonica B21, 843.Google Scholar
  40. 40.
    Martins, M. A. P. (1992). Ph.d. thesis, University of London, in preparation.Google Scholar
  41. 41.
    Ehlers, J., and Kundt, W. (1962). InGravitation. An introduction to current research, L. Witten, ed. (John Wiley, New York).Google Scholar
  42. 42.
    Bonnor, W. B. (1990).Wissenschaft. Z. der Friedrich-Schiller Universitat Jena 39, 25.Google Scholar
  43. 43.
    Horský, J. (1968).Czech. J. Phys. 18, 569.Google Scholar
  44. 44.
    Gautreau, R., and Hoffman, R. B. (1969).Nuovo Cimenta B61, 411.Google Scholar
  45. 45.
    Ruban, V. A. (1986).Soviet Astronomy 30(2), 142.Google Scholar
  46. 46.
    Papapetrou, A. (1953).Annalen Physik 12, 309.Google Scholar
  47. 47.
    Rindler, W., and Perlick, V. (1990).Gen. Rel. Grav. 22, 1067.Google Scholar
  48. 48.
    Krasinski, A. (1978).Ann. Phys. 112, 22.Google Scholar
  49. 49.
    McManus, D. (1991).Class. Quant. Grav. 8, 863.Google Scholar
  50. 50.
    Gutsunaev, Ts. I., and Manko, V. S. (1989).Class. Quant. Grav. 6, L137.Google Scholar
  51. 51.
    Castejón-Amenedo, J., MacCallum, M. A. H., and Manko, V. S. (1989).Class. Quant. Grav. 6, L211.Google Scholar
  52. 52.
    Tomimatsu, A., and Sato, H. (1972).Phys. Rev. Lett. 29, 1344.Google Scholar
  53. 53.
    Tomimatsu, A., and Sato, H. (1973).Prog. Theor. Phys. 50, 95.Google Scholar
  54. 54.
    Cosgrove, C. M. (1977).J.Phys. A10, 1481.Google Scholar
  55. 55.
    Cosgrove, C. M. (1978).J.Phys. A11, 2389, 2405.Google Scholar
  56. 56.
    Kramer, D., and Neugebauer, G. (1980).Phys. Lett. 75A, 259.Google Scholar
  57. 57.
    Dietz, W., and Hoenselaers, C. (1982).Phys. Rev. Lett. 48, 778.Google Scholar
  58. 58.
    Bičak, J., and Hoenselaers, C. (1985).Phys. Rev. D 31, 2476.Google Scholar
  59. 59.
    Tomimatsu, A. (1983).Prog. Theor. Phys. 70, 385.Google Scholar
  60. 60.
    Hoenselaers, C. (1986). InProceedings of the IV Marcel Grossmann meeting in General Relativity, Rome, R. Ruffini, ed. (Elsevier, Amsterdam).Google Scholar
  61. 61.
    Misner, C. W. (1963).J. Math. Phys. 4, 924.Google Scholar
  62. 62.
    Misner, C. W. (1967). InLectures in Applied Mathematics, J. Ehlers, ed. (American Mathematical Society, Providence, Rhode Island).Google Scholar
  63. 63.
    Taub, A. H. (1951).Ann. Math. 53, 472.Google Scholar
  64. 64.
    Bonnor, W. B. (1969).Proc. Camb. Phil. Soc. 66, 145.Google Scholar
  65. 65.
    Sackfield, A. (1971).Proc. Camb. Phil. Soc. 70, 89.Google Scholar
  66. 66.
    Demiański, M., and Newman, E. T. (1966).Bulletin de l'Academie Polonaise des Sciences, Ser. Sciences Phys. 14, 653.Google Scholar
  67. 67.
    Dowker, J. S. (1974).Gen. Rel. Grav. 5, 603.Google Scholar
  68. 68.
    Zimmerman, R. L., and Shahir, B. Y. (1989).Gen. Rel. Grav. 21, 821.Google Scholar
  69. 69.
    van Stockum, W. J. (1937).Proc. R. Soc. Edin. 57, 135.Google Scholar
  70. 70.
    Bonnor, W. B. (1980).J. Phys. A13, 2121.Google Scholar
  71. 71.
    Som, M. M., Teixeira, A. F. F., and Idel Wolk. (1976).Gen. Rel. Grav. 7, 263.Google Scholar
  72. 72.
    Embacher, F. (1983).J. Math. Phys. 24, 1182.Google Scholar
  73. 73.
    Jordan, S. R., and McCrea, J. D. (1982).J. Phys. A15, 1807.Google Scholar
  74. 74.
    Plebański, J., and Demiański, M. (1976).Ann. Phys. (NY) 98, 98.Google Scholar
  75. 75.
    McCrea, J. D. (1976).J. Phys. A9, 697.Google Scholar
  76. 76.
    Wald, R. M. (1984).General Relativity (University of Chicago Press, Chicago).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • W. B. Bonnor
    • 1
  1. 1.Queen Mary and Westfield CollegeLondonUK

Personalised recommendations