Advertisement

General Relativity and Gravitation

, Volume 16, Issue 10, pp 943–953 | Cite as

Cosmic censorship and conformai transformations

  • Richard P. A. C. Newman
Research Articles

Abstract

A new definition of a nakedly singular space-time is proposed. Conformai transformations of general, vacuum space-times are considered for conformai factors which are proper mappings into (0, ∞). A space-time generated in this manner which is null convergent on the future Cauchy development of a partial Cauchy surface is shown to be not nakedly singular relative to that surface in the sense of the chosen definition. If the conformal factor is bounded from above then the untransformed, vacuum space-time is similarly not nakedly singular. A censorship theorem for null convergent, conformally flat space-times is obtained as a corollary to the principal result.

Keywords

Differential Geometry Proper Mapping Principal Result Conformal Factor Cauchy Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hawking, S. W., and Ellis, G. F. R. (1973).The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics, Cambridge University Press, London.Google Scholar
  2. 2.
    Penrose, R. (1969).Riv. Nuovo Cimento,1, 252–276.Google Scholar
  3. 3.
    Newman, R. P. A. C. (1983).Gen. Rel Grav.,15, 641–653.Google Scholar
  4. 4.
    Newman, R. P. A. C. (1984).Gen. Rel. Grav.,16, 175–192.Google Scholar
  5. 5.
    Newman, R. P. A. C. (1984). Censorship, strong curvature and asymptotic causal pathology,Gen. Rel. Grav. (to be published).Google Scholar
  6. 6.
    Newman, R. P. A. C. (1984). Persistent curvature and cosmic censorship,Gen. Rel. Grav. (to be published).Google Scholar
  7. 7.
    Newman, R. P. A. C. (1984). Censorship, persistent curvature and asymptotic causal pathology, inClassical General Relativity, (eds. W. B. Bonnor, M. A. H. MacCallum, and J. N. Islam), Cambridge University Press, London.Google Scholar
  8. 8.
    Clarke, C. J. S., and de Felice, F. (1984).Gen. Rel. Grav.,16, 139–148.Google Scholar
  9. 9.
    Penrose, R. (1973). Gravitational collapse, inGravitational Radiation and Gravitational Collapse, Proc. I.A.U. meeting no. 64 (Warsaw), (ed. C. de Witt-Morette), Reidel, Boston).Google Scholar
  10. 10.
    Yodzis, P., Seifert, H. J., and Muller zum Hagen, H. (1973).Commun. Math. Phys.,34, 135–148.Google Scholar
  11. 11.
    Yodzis, P., Seifert, H. J., and Muller zum Hagen, H. (1974).Commun. Math. Phys.,37, 29–40.Google Scholar
  12. 12.
    Carter, B. (1968).Phys. Rev.,174, 1559–1571.Google Scholar
  13. 13.
    Budic, R., Isenberg, J., Lindblom, L., and Yaskin, P. (1978).Commun. Math. Phys.,61, 87.Google Scholar
  14. 14.
    Krolak, A. (1983). Private communication.Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • Richard P. A. C. Newman
    • 1
  1. 1.Department of Applied MathematicsQueen Mary CollegeLondonEngland

Personalised recommendations