Advertisement

General Relativity and Gravitation

, Volume 20, Issue 9, pp 943–950 | Cite as

The Brans-Dicke scalar field in Einstein-Cartan theory

  • Ramanand Jha
  • E. A. Lord
  • K. P. Sinha
Research Articles

Abstract

In the framework of Einstein-Cartan (EC) theory, the Brans-Dicke (BD) theory is considered and it is found that a scalar field nonminimally coupled to the gravitational field gives rise to torsion, even though the scalar field has zero spin. The metric equations stay the same if the coupling constant is rescaled, but the equations of motion of a test particle, derived from the conservation equations, differ from those of the usual BD theory without torsion. The gravitational red-shift value differs considerably from the usual prediction of general theory of relativity (GTR), and rules out the possibility of a torsion version of BD theory forω<6.

Keywords

General Theory Scalar Field Differential Geometry Conservation Equation Gravitational Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hehl, F. W., von der Heyde, P., Kerlick, G. D., and Nester, J. M. (1976).Rev. Mod. Phys.,48, 393.Google Scholar
  2. 2.
    Nieh, H. T. (1982).Phys. Lett. A,88, 388.Google Scholar
  3. 3.
    Davis, W. R. (1985). In Sir A. Bedingtem Centenary Symposium, Vol. 2, Choquet, Y., ed. (World Scientific, Singapore), p. 1.Google Scholar
  4. 4.
    Rauch, R. T. (1984).Phys. Rev. Lett.,52, 1848.Google Scholar
  5. 5.
    Kim, S. W. (1986).Phys. Rev. D,34, 1011.Google Scholar
  6. 6.
    Brans, C., and Dicke, R. H. (1961).Phys. Rev.,124, 925.Google Scholar
  7. 7.
    Rauch, R., Shaw, J. C., and Nieh, H. T. (1982).Gen. Rel. Grav.,14, 331; Rauch, R. T. (1982).Phys. Rev. D,25, 577.Google Scholar
  8. 8.
    Hehl, F. W. (1970). Unpublished habilitation thesis, Clausthal Technical University.Google Scholar
  9. 9.
    Papapetrou, A. (1974). Lecture on General Relativity (D. Reidel, Dordrecht, Amsterdam), p. 152; Papapetrou, A. (1951).Proc. Roy. Soc. Lond. A,209, 248.Google Scholar
  10. 10.
    Will, C. M. (1984).Phys. Rep.,113, 347.Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • Ramanand Jha
    • 1
  • E. A. Lord
    • 2
  • K. P. Sinha
    • 2
  1. 1.Department of PhysicsIndian Institute of ScienceBangaloreIndia
  2. 2.Division of Physics and Mathematical ScienceIndian Institute of ScienceBangaloreIndia

Personalised recommendations