Advertisement

General Relativity and Gravitation

, Volume 20, Issue 2, pp 171–181 | Cite as

Boost-rotation symmetric gravitational null cone data

  • Jiří Bičák
  • Paul Reilly
  • Jeffrey Winicour
Research Articles

Abstract

The potential role of boost-rotation symmetric vacuum spacetimes as test beds for numerical studies of gravitational radiation is discussed. For application to null cone evolution codes, these spacetimes are analyzed in terms of their data on the preferred null cone left invariant by the symmetry group. On this cone, an explicit solution of the Bondi hypersurface and evolution equations is found. This solution has a smooth vertex, a smooth interior, and, except for polar singularities, admits a well-defined+.

Keywords

Radiation Potential Role Evolution Equation Symmetry Group Differential Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Centrella, J. M., Shapiro, S. L., Evans, C. R., Hawley, J. F., and Teukolsky, S. A. (1986). InDynamical Spacetimes and Numerical Relativity, J. M. Centrella, ed. (Cambridge University Press, Cambridge).Google Scholar
  2. 2.
    Bonnor, W. B., and Swaminarayan, N. S. (1964).Zeit. f. Phys.,177, 240.Google Scholar
  3. 3.
    Bičák, J. (1968).Proc. R. Soc.,A302, 201.Google Scholar
  4. 4.
    Schmidt, B. G. (1981).Commun. Math. Phys.,78, 447.Google Scholar
  5. 5.
    Ashtekar, A., and Dray, T. (1981).Commun. Math. Phys.,79, 581.Google Scholar
  6. 6.
    Bičák, J., and Schmidt, B. G. (1984).J. Math. Phys.,25, 600.Google Scholar
  7. 7.
    Isaacson, R. A., Welling, J. S., and Winicour, J. (1985).J. Math. Phys.,26, 2859.Google Scholar
  8. 8.
    Gomez, R., Isaacson, R. A., Welling, J. S., and Winicour, J. (1986). InDynamical Spacetime and Numerical Relativity, J. M. Centrella, ed. (Cambridge University Press, Cambridge).Google Scholar
  9. 9.
    Bardeen, J. H., and Piran, T. (1983).Phys. Rept.,96, 205.Google Scholar
  10. 10.
    Evans, C. R. (1986). InDynamical Spacetimes and Numerical Relativity, J. M. Centrella, ed. (Cambridge University Press, Cambridge).Google Scholar
  11. 11.
    Friedrich, H., and Stewart, J. M. (1983).Proc. R. Soc.,A385, 345.Google Scholar
  12. 12.
    Corkill, R. W., and Stewart, J. M. (1983).Proc. R. Soc.,A386, 373.Google Scholar
  13. 13.
    Bondi, H., van der Burg, M. G., and Metzner, A. W. K. (1962).Proc. R. Soc.,A269, 21.Google Scholar
  14. 14.
    Tamburino, L., and Winicour, J. (1966).Phys. Rev.,150, 1039.Google Scholar
  15. 15.
    Winicour, J. (1986). InGravitational Collapse and Relativity, H. Sato and T. Nakamura, eds. (World Scientific Publishing, Singapore).Google Scholar
  16. 16.
    Bonnor, W. B. (1983).Gen. Rel. Grav.,15, 535.Google Scholar
  17. 17.
    Bičák, J., Hoenselaers, C., and Schmidt, B. G. (1983).Proc. R. Soc.,A390, 411.Google Scholar
  18. 18.
    Newman, E. T., and Penrose, R. (1962).J. Math. Phys.,3, 566.Google Scholar
  19. 19.
    Winicour, J. (1985).Found. Phys.,15, 605.Google Scholar
  20. 20.
    Bičák, J. (1986). In I. Rovinson's Festschrift, W. Rindler and A. Trautman, eds. (Bibliopolis, Naples).Google Scholar
  21. 21.
    Novak, S., and Goldberg, J. N. (1982).Gen. Rel. Grav.,14, 655.Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • Jiří Bičák
    • 1
  • Paul Reilly
    • 2
  • Jeffrey Winicour
    • 2
  1. 1.Department of Mathematical PhysicsCharles UniversityPrague 8Czechoslovakia
  2. 2.Department of PhysicsUniversity of PittsburghPittsburgh

Personalised recommendations