General Relativity and Gravitation

, Volume 11, Issue 6, pp 411–418 | Cite as

Using camal for algebraic computations in general relativity

  • J. P. Fitch
  • H. I. Cohen
Research Articles


CAMAL is a collection of computer algebra systems developed in Cambridge, England for use mainly in theoretical physics. One of these was designed originally for general relativity calculations, although it is often used in other fields. In a recent paper Cohen, Leringe, and Sundblad compared six systems for algebraic computations applied to general relativity available in Stockholm. Here we give similar information for CAMAL, and by using the same tests we add CAMAL to the comparison.


General Relativity Theoretical Physic Differential Geometry Computer Algebra Similar Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barton, D., and Fitch, J. P. (1972).Rep. Prog. Phys.,35, 235.Google Scholar
  2. 2.
    D'Inverno, R. A. (1975).Gen. Rel. Grav.,6, 567.Google Scholar
  3. 3.
    Cohen, H. I., Leringe, Ö., and Sundblad, Y. (1976).Gen. Rel. Grav.,7, 269.Google Scholar
  4. 4.
    Barton, D., Bourne, S. R., and Fitch, J. P. (1970).Comput. J.,13, 32.Google Scholar
  5. 5.
    Barton, D., Bourne, S. R., and Horton, J. H. (1970).Comput. J.,13, 243.Google Scholar
  6. 6.
    Harrison, B. K. (1959).Phys. Rev.,116, 1285.Google Scholar
  7. 7.
    Fitch, J. P. (1971). Ph.D. thesis, University of Cambridge.Google Scholar
  8. 8.
    D'Inverno, R. A., and Russell-Clark, R. A. (1971).J. Math. Phys.,12, 1258.Google Scholar
  9. 9.
    Hartley, D. (1973). Ph.D. thesis, University of London.Google Scholar
  10. 10.
    Campbell, S. J., and Wainwright, J. (1977).Gen. Rel. Grav.,8, 987.Google Scholar
  11. 11.
    Richards, M. (1969).Spring Joint Computer Conference,34, 557.Google Scholar
  12. 12.
    Hearn, A. C. (1971).Proceedings of the 2nd Symposium on Symbolic and Algebraic Manipulation (ACM, New York), p. 128.Google Scholar
  13. 13.
    Barron, D., Brown, H., Hartley, D. F., and Swinnerton-Dyer, H. P. F. (1967).Titan Autocode Manual, University Mathematical Laboratory, Cambridge.Google Scholar
  14. 14.
    Bondi, H., Van der Burg, M., and Metzner, A. (1962).Proc. R. Soc. London Ser. A 332, 549.Google Scholar
  15. 15.
    Levy, H. (1968).Proc. Cambridge Philos. Soc.,64, 1081.Google Scholar
  16. 16.
    LISP/360 Reference Manual, Stanford Center for Information Processing.Google Scholar
  17. 17.
    Fitch, J. P., and Norman, A. C. (1977).Software Pract. Exper.,7, 713.Google Scholar
  18. 18.
    Xenakis, J. (1971). InProceedings of the 2nd Symposium on Symbolic and Algebraic Manipulation (ACM, New York).Google Scholar
  19. 19.
    Bahr, K. (1975).SIGSAM Bull.,34, 5.Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • J. P. Fitch
    • 1
  • H. I. Cohen
    • 2
  1. 1.Department of Computer StudiesUniversity of LeedsLeedsEngland
  2. 2.Department of Theoretical PhysicsStockholm UniversityStockholmSweden

Personalised recommendations