General Relativity and Gravitation

, Volume 1, Issue 1, pp 9–18 | Cite as

Self-interaction and gauge invariance

  • S. Deser
Research Articles

Abstract

A simple unified closed form derivation of the non-linearities of the Einstein, Yang-Mills and spinless (e.g. chiral) meson systems is given. For the first two, the non-linearities are required by locality and consistency; in all cases, they are determined by the conserved currents associated with the initial (linear) gauge invariance of the first kind. Use of first-order formalism leads uniformly to a simple cubic self-interaction.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kraichnan, R. (1955). Thesis, Massachusetts Institute of Technology, 1947; andPhysical Review,98, 1118.Google Scholar
  2. 2.
    Papapetrou, A. (1948).Proceedings of the Royal Irish Academy,52A, 11.Google Scholar
  3. 3.
    Gupta, S. N. (1952).Proceedings of the Physical Society of London,A65, 608.Google Scholar
  4. 4.
    Feynman, R. P. (1956). Chapel Hill Conference.Google Scholar
  5. 5.
    Thirring, W. (1959).Fortschritte der Physik,7, 79.Google Scholar
  6. 6.
    Halpern, L. (1963).Bulletin de l'Académie r. de Belgique. Classe des sciences,49, 226.Google Scholar
  7. 7.
    Yang, C. N. and Mills, R. L. (1954).Physical Review,96, 191.Google Scholar
  8. 8.
    Arnowitt, R. and Deser, S. (1963).Nuclear Physics,49, 133.Google Scholar
  9. 9.
    Utiyama, R. (1956).Physical Review,101, 1597.Google Scholar
  10. 10.
    Freund, P. G. O. and Nambu, Y. (1968).Physical Review,174, 1741.Google Scholar
  11. 11.
    Sugawara, H. (1968).Physical Review,170, 1659.Google Scholar
  12. 12.
    Sommerfield, C. M. (1968).Physical Review,176, 2019.Google Scholar
  13. 13.
    Deser, S. (1969).Physical Review,187, 1931.Google Scholar

Copyright information

© Plenum Publishing Company Limited 1970

Authors and Affiliations

  • S. Deser
    • 1
    • 2
  1. 1.Physics DepartmentBrandeis UniversityWaltham
  2. 2.Nordita, Copenhagen

Personalised recommendations