General Relativity and Gravitation

, Volume 25, Issue 9, pp 893–900 | Cite as

Why do clocks tick?

  • David A. Meyer
Research Articles


Drawing on recent developments in the matrix model approach to string theory and the causal set program for quantum gravity we address the question of the origin of time as one aspect of the phase transition from a topological quantum field theory to a quantum theory of gravity. We construct a model with two phases which can be interpreted as containing clocks which either do not tick or tick exactly once. This demonstrates that while a theory based on causal sets may appear to have inherent notions of time and causality, the existence of a phase transition means, that as Saint Augustine wrote in hisConfessions, “the ‘time’, if such we may call it, when there was no time was not time at all.”


Phase Transition Field Theory Quantum Field Theory Quantum Theory Quantum Gravity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For example, see Witten, E. (1989).Commun. Math. Phys. 121, 351; Moore, G., and Seiberg, N. (1989).Commun. Math. Phys. 123, 177; Reshetikhin, N. Yu., and Turaev, V. G. (1991)Invent, math. 103, 547; Walker, K. (1991). “On Witten's 3-manifold invariants,” UCSD preprint.Google Scholar
  2. 2.
    Witten, E. (1988).Commun. Math. Phys. 117, 353; (1988).Phys. Lett. 206B 601.Google Scholar
  3. 3.
    Saint Augustine (1961).Confessions, transl., with an introduction by R. S. Pine-Coffin (Viking Penguin Inc., New York); parenthesized numbers refer to pages in this edition.Google Scholar
  4. 4.
    Finkelstein, D. (1969).Phys. Rev. 184, 1261; Myrheim, J. (1978). “Statistical geometry,” CERN preprint TH-2538; 't Hooft, G. (1979). InRecent developments in Gravitation, Cargèse 1978, M. Lévy and S. Deser, eds., NATO AST Ser. B vol. 44, (Plenum Press, New York).Google Scholar
  5. 5.
    Bombelli, L., Lee, J., Meyer, D., and Sorkin, R. D. (1987).Phys. Rev. Lett. 59, 521; Moore, C. (1988).Phys. Rev. Lett. 60, 655; Bombelli, L., Lee, J., Meyer, D., and Sorkin, R. D. (1988).Phys. Rev. Lett. 60, 656 (reply to C. Moore); Bombelli, L. (1987).Space-time as a causal set, Ph.D. thesis (physics), Syracuse University.Google Scholar
  6. 6.
    For reviews see Witten, E. (1991). InSurveys in Differential Geometry. (Proc, Conf. on Geometry and Topology, Harvard University 27–29 April 1990, sponsored by Lehigh University), C. C. Hsiung and S. T. Yau, eds.,Suppl. to J. Diff. Geom. 1, 243; Klebanov, I. R. (1991). “String theory in two dimensions,” Princeton University preprint PUPT-1271, July 1991; Ginsparg, P. (1991). “Matrix models of 2d gravity,” LANL preprint LA-UR-91-9999 (December 1991).Google Scholar
  7. 7.
    Riemann, G. F. B. (1919).Über die Hypothesen, welche der Geometrie zugrunde liegen, ed. H. Weyl (Springer-Verlag, Berlin).Google Scholar
  8. 8.
    Hawking, S. W., King, A. R., and McCarthy, P. J. (1976).J. Math. Pliys. 17, 174; Malament, D. (1977).J. Math. Phys. 18 1399.Google Scholar
  9. 9.
    Stanley, R. P. (1986).Enumerative Combinatorics, vol.I (Wadsworth & Brooks/Cole, Monterey).Google Scholar
  10. 10.
    Meyer, D. A. (1988).The Dimension of Causal Sets, Ph.D. thesis (mathematics), M.I.T.; Bombelli, L., and Meyer, D. A. (1989).Phys. Lett. A141 226; Meyer, D. A., and Sorkin, R. D. (1993). “On poset completion,” in preparation; Bombelli, L., and Sorkin, R. D. (1993). “When are two Lorentzian metrics close?” in preparation.Google Scholar
  11. 11.
    Sorkin, R. D. (1991). InProc. of IX Italian Conf. on General Relativity and Gravitational Physics, 24–29 September 1990, Capri, R. Cianci, R. De Ritis, M. Francaviglia, G. Marmo, C. Rubano, and P. Scudellaro, eds. (World Scientific, Singapore); (1991). InRelativity and Gravitation: Classical and Quantum (Proc. SILARG VII Conference, December 1990, Mexico City (Cocoyoc), Mexico), J. C. D'Olivo, E. Nahmad-Achar, M. Rosenbaum, M. P. Ryan, L. F. Urrutia, F. Zertuche, eds. (World Scientific, Singapore).Google Scholar
  12. 12.
    Hawking, S. W. (1979). InGeneral Relativity: An Einstein Centenary Survey, S. W. Hawking and W. Israel, eds. (Cambridge University Press, Cambridge).Google Scholar
  13. 13.
    Meyer, D. A. (1992). “Spacetime Ising models,” UCSD preprint.Google Scholar
  14. 14.
    Banks, T., and O'Loughlin, M. (1991).Nucl Phys. B362, 649; Moore, G., Seiberg, N., and Staudacher, M. (1991).Nucl. Phys. B362, 665.Google Scholar
  15. 15.
    van Hove, L. (1950).Physica 16, 137; Lieb, E. H., and Mattis, D. C. (1966).Mathematical Physics in One Dimension (Academic Press, London).Google Scholar
  16. 16.
    Thompson, C. J. (1972). InPhase Transitions and Critical Phenomena. Vol. 1: Exact Results, C. Domb and M. S. Green, eds. (Academic Press, London).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • David A. Meyer
    • 1
  1. 1.Department of Physics and Institute for Pure and Applied Physical SciencesUniversity of California/San DiegoLa JollaUSA

Personalised recommendations