Advertisement

General Relativity and Gravitation

, Volume 20, Issue 3, pp 261–277 | Cite as

On the problem of spacetime symmetries in the theory of supergravity

  • M. A. J. Vandyck
Research Articles

Abstract

In the framework of the simple (N=1) supergravity, a definition of a spacetime symmetry is discussed. It is shown to have a smooth relativistic limit. As an application, the problem of the plane wave in supergravity is studied.

Keywords

Plane Wave Differential Geometry Relativistic Limit Spacetime Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aichelburg, P. C., and Dereli, T. (1978).Phys. Rev.,D18, 1754.Google Scholar
  2. 2.
    Dereli, T., and Aichelburg, P. C. (1979).Phys. Lett.,B80, 357.Google Scholar
  3. 3.
    Aichelburg, P. C., and Guven, R. (1983).Phys. Rev. Lett.,51, 1613.Google Scholar
  4. 4.
    Beler, A., and Dereli T. (1985).Class. Quant. Grav.,2, 147.Google Scholar
  5. 5.
    Beler, A., and Dereli, T. (1985).Class. Quant. Grav.,2, 823.Google Scholar
  6. 6.
    Rosenbaum, M., Ryan M., and Urrutia L. F. (1987).Class. Quant. Grav.,4, 79.Google Scholar
  7. 7.
    Bergmann, P. G., and Flaherty, E. J. (1978).Jour. Math. Phys.,19, 212.Google Scholar
  8. 8.
    Trautman, A. (1980).Jour. Phys.,A13, L1.Google Scholar
  9. 9.
    Freedman, D. Z., van Nieuwenhuizen, P. (1976).Phys. Rev.,D13, 3214.Google Scholar
  10. 10.
    Aichelburg, P. C., and Urbantke H. K. (1981).Gen. Rel. Grav.,13, 817.Google Scholar
  11. 11.
    Huggett, S. A., and Tod, K. P. (1985).An Introduction to Twistor Theory (Cambridge University Press, London) 34.Google Scholar
  12. 12.
    Jhangiani, V. (1978).Found. Phys.,8, 445.Google Scholar
  13. 13.
    Vandyck, M. A. J. (1987).Class. Quant. Grav.,4, 683.Google Scholar
  14. 14.
    Kramer, D., Stephani, H., Herlt, E., and MacCallum M. (1980). InExact Solutions of Einstein's field equations (Cambridge University Press, London) 235.Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • M. A. J. Vandyck
    • 1
  1. 1.Dublin Institute for Advanced StudiesDublin 4Ireland

Personalised recommendations