General Relativity and Gravitation

, Volume 19, Issue 12, pp 1195–1201 | Cite as

On the gravitational field of a plane plate in general relativity

  • Jan Novotný
  • Jaromír Kučera
  • Jan Horský
Research Articles


It is shown that a static solution of the Einstein equations inside an infinite plate of an ideal liquid with continuous metric coefficients and their first derivatives cannot have a plane of mirror symmetry. As a consequence, the boundaries of the plate are joined with qualitatively different vacuum solutions on both sides of the plate.


General Relativity Static Solution Mirror Symmetry Differential Geometry Gravitational Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kramer, D., Stephani, H., MacCallum, M., and Herlt, E. (1980).Exact Solutions of Einstein's Field Equations (VEB Deutscher Verlag der Wissenschaften, Berlin).Google Scholar
  2. 2.
    Carlson, G. T., and Safko, J. L. (1978).J. Math. Phys.,19, 1617.Google Scholar
  3. 3.
    Taub, A. H. (1951).Ann. Math.,53, 472.Google Scholar
  4. 4.
    Horský, J. (1968).Czech. J. Phys. B,18, 435.Google Scholar
  5. 5.
    Novotný, J. (1975).Scripta Fac. Sci. UJEP Brno,5, 211.Google Scholar
  6. 6.
    Amundsen, P. A., and Grøn, Ø. (1983).Gen. Rel. Grav.,4, 315.Google Scholar
  7. 7.
    Avakyan, R. M., and Horský, J. (1975).Sov. Astrophys. J.,11, 454.Google Scholar
  8. 8.
    Israel, W. (1966).Il Nuovo Cim.,X, 1.Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Jan Novotný
  • Jaromír Kučera
  • Jan Horský
    • 1
  1. 1.Department of Theoretical Physics of the JEP UniversityBrnoCzechoslovakia

Personalised recommendations