General Relativity and Gravitation

, Volume 21, Issue 8, pp 761–766 | Cite as

Black hole evaporation and higher-derivative gravity

  • Robert C. Myers
  • Jonathan Z. Simon
Research Articles


We examine the role which higher-derivative gravity interactions may play in black hole evaporation. The thermodynamic properties of black holes in Lovelock gravity are described. In certain cases, the specific heat of a black hole becomes positive at a small mass. This results in an infinite lifetime for the black hole (and also allows it to achieve stable equilibrium with a thermal environment). Thus no conflict with unitary time evolution would arise in such theories.


Evaporation Black Hole Time Evolution Thermodynamic Property Differential Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hawking, S. W. (1975).Commun. Math. Phys.,43, 199.Google Scholar
  2. 2.
    See, for example: 't Hooft, G., and Veltman, M. (1974).Ann. Inst. H. Poincaré,20, 69; van Nieuwenhuizen, P. (1977).Ann. Phys.,104, 197; Deser, S., and van Nieuwenhuizen, P. (1974).Phys. Rev.,D10, 401, 411; Deser, S., Tsao, H. T., and van Nieuwenhuizen, P. (1974).Phys. Rev.,D10, 3337; Grisaru, M. T., van Nieuwenhuizen, P., and Vermaseren, J. A. M. (1976).Phys. Rev. Lett.,37, 1662, 1669; Deser, S., Kay, J., and Stelle, K. (1977).Phys. Rev. Lett.,38, 527; Goroff, M. H., and Sagnotti, A. (1986).Nucl. Phys.,B266, 709.Google Scholar
  3. 3.
    See, for example: Nepomechie, R. I. (1985).Phys. Rev.,D32, 3201; Gross, D. J., Harvey, J., Martinec, E., and Rohm, R. (1986).Nucl. Phys.,B267, 75; Gross, D. J., and Witten, E. (1986).Nucl. Phys.,B277, 1; Callan, C. G., Martinec, E. J., Perry, M. J., and Friedan, D. (1985).Nucl. Phys.,B262, 593; Grisaru, M. T., van de Ven, A. E. M., and Zanon, D. (1986).Phys. Lett.,173B, 423, (1986).Nucl. Phys.,B277, 388, 409; Grisaru, M. T., and Zanon, D. (1986).Phys. Lett.,177B, 347; Sloan, J. H., and Gross, D. J. (1987).Nucl. Phys.,B291, 41.Google Scholar
  4. 4.
    Lovelock, D. (1971).J. Math. Phys.,12, 498;13, (1972). 874.Google Scholar
  5. 5.
    Zweibach, B. (1985).Phys. Lett.,156B, 315; Zumino, B. (1986).Phys. Rep.,137, 109.Google Scholar
  6. 6.
    Boulware, D. G., and Deser, S. (1985).Phys. Rev. Lett.,55, 2656.Google Scholar
  7. 7.
    Wheeler, J. T. (1986).Nucl. Phys.,B268, 737; (1986).B273, 732.Google Scholar
  8. 8.
    Tangherlini, F. R. (1963).Nuovo Cimento,77, 636; see also Myers, R. C., and Perry, M. J. (1986).Ann. Phys.,172, 304.Google Scholar
  9. 9.
    Myers, R. C., and Simon, J. Z. (1988). ITP preprint.Google Scholar
  10. 10.
    Hartle, J. B., and Hawking, S. W. (1976).Phys. Rev.,D13, 2188.Google Scholar
  11. 11.
    Gibbons, G. W., and Perry, M. J. (1978).Proc. R. Soc. Lond.,A358, 476; (1976).Phys. Rev. Lett.,36, 985.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Robert C. Myers
    • 1
  • Jonathan Z. Simon
    • 2
  1. 1.Institute for Theoretical PhysicsUniversity of CaliforniaSanta Barbara
  2. 2.Department of PhysicsUniversity of CaliforniaSanta Barbara

Personalised recommendations