Advertisement

General Relativity and Gravitation

, Volume 22, Issue 9, pp 1045–1065 | Cite as

Nonsingular cosmological model with matter creation and entropy production

  • Walter Petry
Research Articles

Abstract

The study of nonsingular cosmological models [4] based on a theory of gravitation in flat space-times [1] is continued. For a radiation free universe the solution of the model is given analytically. Under the assumption that entropy cannot decrease the cosmological constant must be zero. At the beginning of the universe all energy is in the form of gravitation. The universe contracts. Matter and radiation are created out of gravitational energy and entropy is produced. The contraction stops and then the universe expands without limit. The creation of matter continues producing entropy but today the production of matter and entropy is negligible. The density parameter Ω0 ≈ 1, i.e. there must be “missing mass” in the universe. The “flatness” and the “homogeneity” problem are solved.

Keywords

Radiation Entropy Cosmological Constant Differential Geometry Cosmological Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Petry, W. (1981).Gen. Rel. Grav.,13, 865.Google Scholar
  2. 2.
    Petry, W. (1982).Gen. Rel. Grav.,14, 803.Google Scholar
  3. 3.
    Petry, W. (1988).Astrophys. Space Sci.,140, 407.Google Scholar
  4. 4.
    Petry, W. (1981).Gen. Rel. Grav.,13, 1057.Google Scholar
  5. 5.
    Mazur, A. (1989).Ann. Phys. Fr.,14, 347.Google Scholar
  6. 6.
    Guth, A. H. (1981).Phys. Rev. D,23, 1347.Google Scholar
  7. 7.
    Linde, A. D. (1984).Rep. Prog. Phys.,47, 925.Google Scholar
  8. 8.
    Vilenkin, A. (1983).Phys. Rev. D,27, 2848.Google Scholar
  9. 9.
    Géhéniau, J., Gunzig, E., and Stengers, I. (1987).Found. Phys.,17, 585.Google Scholar
  10. 10.
    Gunzig, E., Géhéniau, J., and Prigogine, I. (1987).Nature,330, 621.Google Scholar
  11. 11.
    Prigogine, I., Géhéniau, J., Gunzig, E., and Nardone, P. (1989).Gen. Rel. Grav.,21, 767.Google Scholar
  12. 12.
    Dymnikova, I. G. (1986).Sov. Phys. JETP,63, 1111.Google Scholar
  13. 13.
    Israelit, M., and Rosen, N. (1989).Astrophys. J.,342, 627.Google Scholar
  14. 14.
    Ellis, G. F. R. (1984).Ann. Rev. Astron. Astrophys.,22, 157.Google Scholar
  15. 15.
    Fang, L. Z., and Sato, H. (1985).Gen. Rel. Grav.,17, 1117.Google Scholar
  16. 16.
    Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973).Gravitation (W. H. Freeman, San Francisco).Google Scholar
  17. 17.
    Weinberg, S. (1972).Gravitation and Cosmology (Wiley, New York).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Walter Petry
    • 1
  1. 1.Mathematisches Institut der Universität Düsseldorf4 Düsseldorf 1Federal Republic of Germany

Personalised recommendations